PROGRAM OF STUDIES

FACULTY: Electronics, Photonics and Microsystems.

MAIN FIELD OF STUDY: Electronics.

DISCIPLINES: D1 - Control Engineering, Electronics, Electrotechnics and Space Technologies,

EDUCATION LEVEL: second-level studies

FORM OF STUDIES: full-time studies

PROFILE: general academic

LANGUAGE OF STUDY: ENGLISH

IN EFFECT SINCE: 2023/2024...

Content:

- 1. Assumed learning outcomes attachment no. 1 . . . to the program of studies
- 2. Program of studies description attachment no. 2... to the program of studies
- 3. Plan of studies attachment no. 3... to the program of studies

^{*}delete as applicable

ASSUMED LEARNING OUTCOMES

FACULTY: . Electronics, Photonics and Microsystems

MAIN FIELD OF STUDY: Electronics EDUCATION LEVEL: second-level studies

PROFILE: general academic

Location of the main-field-of study:

Branch of science: Engineering and Technical Sciences.

Discipline: Control Engineering, Electronics, Electrotechnics and Space Technologies

Explanation of the markings:

P7U – universal first degree characteristics corresponding to education at the second-level studies - 7 PRK level

P7S – second degree characteristics corresponding to education at the second-level studies - 7 PRK level

W - category "knowledge"

U - category "skills"

K - category "social competences"

K (faculty symbol) _W1, K (faculty symbol) _W2, K (faculty symbol) _W3, ... - main-field-of study learning outcomes related to the category "knowledge"

K (faculty symbol) _U1, K (faculty symbol) _U2, K (faculty symbol) _U3, ... - main-field-of study learning outcomes related to the category "skills"

K (faculty symbol) _K1, K (faculty symbol) _K2, K (faculty symbol) _K3, ... - main-field-of study learning outcomes related to the category "social competences"

S (faculty symbol) _W.., S (faculty symbol) _W.., S (faculty symbol) _W.., ... - specialization learning outcomes related to the category "knowledge"

S (faculty symbol) _U.,, S (faculty symbol) _U.,, S (faculty symbol) _U.,, ... - specialization learning outcomes related to the category "skills"

S (faculty symbol) _K.., S (faculty symbol) _K.., S (faculty symbol) _K.., ... - specialization learning outcomes related to the category "social competences"

... _inż. – learning outcomes related to the engineer competences

^{*} delete as applicable

	Description of learning outcomes for the main-field-of study	Reference to PRK characteristics		
Main field of	Electronics			racteristics typical for d in higher education (S)
study learning outcomes	After completion of studies, the graduate:	Universal first degree characteristics (U)	Characteristics for qualifications on 7 levels of PRK	Characteristics for qualifications on 7 levels of PRK, enabling acquiring engineering competences
	KNOWLEDGE (W	<u>()</u>		
K2EKA_W01	Has extended and in-depth knowledge of selected mathematics branches necessary to understand issues in the field of electronics	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W02	Has extended and in-depth knowledge of selected branches of physics necessary to understand physical phenomena in the field of the scientific discipline being studied	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W03	Has knowledge in the field of creating or developing forms of individual entrepreneurship in the area appropriate for the studied field of study, has knowledge in the field of industrial property protection and copyright	P7U_W	P7S_WK	P7S_WK_INŻ
K2EKA_W04	Explains the principles of operation of lasers and lists their basic properties; explains the principles of light propagation in optical fibers.	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W05	Explains the principles of operation of optimization algorithms used to solve problems in the field of electronics	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W06	Lists and describes advanced numerical methods and algorithms as well as techniques for their implementation allowing for effective solving of problems encountered in electronics	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W07	Recognizes and characterizes new approaches in technologies used in electronics	P7U_W	P7S_WG	P7S_WG_INŻ
K2EKA_W08	Describes the structure, principles of operation and application of advanced systems and technologies used in modern electronic and telecommunications equipment as well as in control and measurement systems	P7U_W	P7S_WG	P7S_WG_INŻ

K2EKA_W09	Lists and characterizes the methods of acquisition, transmission	P7U_W	P7S_WG	P7S_WG_INŻ
	and processing of measurement data in selected areas of	<u>-</u> · ·		
	technology			
K2EKA_W10	Lists and describes the architectures of microprocessor and	P7U_W	P7S_WG	P7S_WG_INŻ
	programmable systems, their applications in selected fields of			
	science and technology, and characterizes the methods and tools			
	necessary for their effective implementation and testing			
	SKILLS (U)			
K2EKA_ U01	Uses a foreign language in accordance with the requirements for	P7U_U	P7S_UK	
	the B2 + CEFR level in terms of scientific and technical language.			
	Levels of linguistic proficiency in interpersonal contacts and			
	communication in an international academic and communication			
	environment.			
K2EKA_ U02	Uses a selected foreign language in accordance with the	P7U_U	P7S_UK	
	requirements specified for the A1 CEFR level in terms of basic			
	language skills; uses basic vocabulary and grammatical structures			
	in everyday life and basic intercultural behavior			
K2EKA_U03	Searches for specialist texts and assesses the possibilities of using	P7U_U	P7S_UK	
	new achievements in the field of techniques and technologies used			
	in electronics; based on literature reports and on the basis of the			
	results of his own work, he integrates, interprets and critically			
	evaluates the presented content as part of the author's presentation			
K2EKA_U04	Uses advanced mathematical methods to solve complex problems	P7U_U	P7S_UW	
774777 1 7707	in the field of electronics		7-6	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
K2EKA_U05	Uses optimization algorithms to solve problems in the field of	P7U_U	P7S_UW	P7S_UW_INŻ
774777 1 770 1	electronics		7-6	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
K2EKA_U06	Uses selected numerical algorithms to solve complex problems in	P7U_U	P7S_UW	P7S_UW_INŻ
	the field of electronics; creates computer models of dynamic			
******	objects, verifies and analyzes implemented models		5=2 7777	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
K2EKA_U07	Selects tools and means and proposes technical and algorithmic	P7U_U	P7S_UW	P7S_UW_INŻ
	solutions that allow to effectively design and run a complex			
	electronic system using available conditioning, processing and			
	signal acquisition techniques			

	Plans, conducts and interprets the results of experiments with the	P7U_U	P7S_UW	P7S UW INŻ
K2EKA_U08	use of advanced electronic equipment in selected areas of	_	_	
· -	application			
K2EKA_U09	Reports on the individual phases of the implementation of a	P7U_U	P7S_UW	P7S_UW_INŻ
	complex project (e.g. A diploma thesis), prepares presentations		P7S_UK	
	containing the results of the experiments carried out, derives and		P7S_UO	
	justifies the resulting conclusions; uses the rules of creative		P7S_UU	
	discussion and assumes the role of a moderator in the group			
K2EKA_U10	Is able to plan and implement the process of self-education,	P7U_U	P7S_UU	
	determine possible directions of further learning throughout life, as			
	well as direct others in this area			
K2EKA_U11	Is able to manage the work of the team and cooperate with other	P7U_U	P7S_UO	
	people in the implementation of tasks and team projects. Is able to			
	responsibly and respect the rules of professional ethics to perform			
	the roles entrusted to the team			
K2EKA_U12	Can evaluate various solutions emerging as part of the design or	P7U_U	P7S_UW	P7S_UW_ INŻ
	research process and make an economic and time-consuming			
	estimate of planned activities in the field of data acquisition,			
	processing and analysis			
K2EKA_U13	Prepares a master's thesis containing research aspects, including:	P7U_U	P7S_UK	P7S_UW_ INŻ.
	- obtains information from literature, databases and other		P7S_UW	
	sources, integrates it, interprets and critically evaluates it,		P7S_UU	
	- plans and conducts experiments, including measurements and			
	computer simulations, interprets the obtained results and draws			
	conclusions,			
	- uses analytical, simulation and experimental methods to			
	formulate and solve problems,			
	- formulates and tests hypotheses related to research problems,			
	- integrates knowledge from various fields and disciplines and			
	applies a systemic approach, also taking into account non-			
	technical aspects,			
	- assesses the usefulness and the possibility of using new			
	achievements (techniques and technologies) in the represented			
	discipline,			
	- proposes improvements / rationalization of existing technical			
	solutions,			

	 interprets the obtained research results, draws appropriate conclusions and formulates recommendations, edits the master's thesis in accordance with formal 			
	requirements.			
	SOCIAL COMPETENCE	ES (K)		
K2EKA_K01	Is aware of the social consequences of engineering activities and	P7U_K	P7S_KO	
	the related responsibility for the decisions made. Understands the		P7S_KR	
	need to provide the society with information and opinions on the			
	achievements of technology and other aspects of the activities of a			
	technical university graduate. Understands the role of the mass			
	media. He is ready to create models of proper conduct in the social			
	and professional environment			
K2EKA_K02	Is able to think and act in a critical, creative and entrepreneurial	P7U_K	P7S_KK	
_	manner, and to properly define priorities for the implementation of	_	P7S_KO	
	a complex task		_	
K2EKA_K03	Is aware of the impact of technical activity on the environment and	P7U_K	P7S_KK	
_	understands the related social responsibility of science and	_	P7S_KO	
	technology		P7S_KR	
K2EKA_K04	Critically evaluate own knowledge and received information;	P7U_K	P7S_KK	
	understands the need for self-education and improving		P7S_KR	
	competencies in the field of engineering and technical sciences			

^{*}delete as applicable

Faculty: **Electronics, Photonics and Microsystems** Education level: **2nd level, full-time**

Main field of study: Electronics

Specjalisation: Advanced Applied Electronics

AAE	
AAL	

PLAN OF STUDIES STRUCTURE IN HOURLY LAYOUT

h\sem.	I	п	III
27		DSP	
26		Architectures	
25	New Appr. in Electronics and Photonics	20200 (5)E	
24	20000 (1) W12EKA-SM0511	W12EKA-SM0505	
23	Optical Fibres and	Hardware Programing	
22	Optocommunication		
21	2010 1 (6)E	20200 (5) E	Master Thesis
20	W12EKA-SM0502	W12EKA-SM0507	W12EKA-SM0513
19		Lasers and Applications	
18	Microcontrollers		7h (16)
17	Programming	20200 (4)	
16	20220 (6) E	W12EKA-SM0506	
15	W12EKA-SM0503	Analog Peripherals	Optional
14			courses
13	Numerical Methods	of Digital Systems	EKA-SM00300AAE
12	and Optimization	20210 (5)	6h (6)
11	20200 (5)	W12EKA-SM0508	
10	W12EKA-SM0502	RF Circuits Design	Lab View
9	Numerical methods	10210 (5)	10020 (4)
8	in differential equations		W12EKA-SM0523
7	20200 (5)	W12EKA-SM0510	Computer Operating Systems
6	W13EKA-SM1642G	Machine Learning Methods	10200 (3)
5	Social Com.00001 (1) W08W12-	10101 (3)	W12EKA-SM0501
	SM0002	, ,	
4	Foreign language B2+ 00100 (1)	W12EKA-SM0509	Entrepreneurship
3	Foreign language	Specialization seminar	10001 (3) W08W12-SM0020
2	(or Polish) A1		Diploma seminar
1	03000 (2)	00003 (2) W12EKA-SM0504	00002 (2) W12EKA-SM0512

Chairman of programme board	Chairman of programme board
of specialization	of main field of study

Uchwała z dnia: Obowiązuje od: 2023/24

Optional Courses

W12EKA-SM0518	Real Time Operating Systems	20200 4 ECTS
W12EKA-SM0517	Optics and Nonlinear Optics	11000 2 ECTS
W12EKA-SM0515	IoT Modules	10010 2 ECTS
W12EKA-SM0522	Electrotechnics	20100 3 ECTS
W12EKA-SM0514	Advanced Objective Programming	20200 4 ECTS

Dean

Faculty: Electronics, Photonics and Microsystems

Education level: **2nd level, full-time** Main field of study: **Electronics**

Specjalisation: Advanced Applied Electronics

Obowiązuje od: 2023/24

PLAN OF STUDIES STRUCTURE IN ECTS LAYOUT

ECTS\	Ī	II	III
sem.	1	11	m
34			
33			
32			
31			
30			
29			Final Project
28		DSP Controllers	
27	New App.in Elc. and Ph. 1	Architecture	
26	Optical Fibres		16
25	and	5	
24	Optocommunication	Hardware	
23	6	Programming	
22		5	
21			
20			
19		Laser and	
18	Microcontrollers	Applications	
17	Programming		Lab View programing
16	6	4	
15		Analog Peripherals	4
14		of Digital Systems	Computer Network
13	Numerical Methods and		and Systems
12			3
11	5	5	Entrepreneurship
10			3
9		RF Circuits Designe	
8	Numerical methods		
7	in differential equations		Optional
6	5	5	courses
5		Machine Learning	
4	Social Commun. 1	Methods	6
3	English B2+ 1	3	
2	Foreign language	Specialization seminar	Diploma seminar
1	(or Polish) A1 2	2	3

Optional Courses:

Real Time Operating Systems 4 ECTS
Optics and Nonlinear Optics 2 ECTS
IoT Modules 2 ECTS
Electrotechnics 3 ECTS
Advanced Objective Programming 4 ECTS

Chairman of programme board	Chairman of programme board	Dean
of specialization	of main field of study	
-	·	
	•••••	•••••

Zal. nr 4 do ZW 16/2020 Attachment no. 4 to Program of Studies

PLAN OF STUDIES

FACULTY: ELECTRONICS, PHOTONICS AND MICROSYSTEMS

MAIN FIELD OF STUDY: Electronisc

EDUCATION LEVEL: second-level studies

FORM OF STUDIES: full-time studies

PROFILE: general academic

SPECIALIZATION: Advanced Applied Electronics (AAE).

LANGUAGE OF STUDY: ENGLISH

IN EFFECT SINCE: 2023/2024

1. Set of obligatory and optional courses and groups of courses in semestral arrangement

Semester 1

Obligatory courses / groups of courses Number of ECTS points 17

O.	ngatory courses / g	Toups of courses	1 10111	1001	,, ,,,	- P	Omto												
No.	Course/	Name of course/group of courses (denote group of courses with	W	eekly	numbe	er of he	ours	Learning effect	Number	of hours	Numbe	r of ECT	'S points		Way ³ of		ourse/grou	p of cours	es
110.	group of courses code	symbol GK)	lec	cl	lab	pr	sem	symbol	ΩZZΩ	CNPS	Total	DN ⁵ classes	BU¹ classes	roup of courses	crediting	University- wide ⁴	Concerning scientific activities ⁵	Practicaf ⁶	Type ⁷
1	W08W12-SM0002S	Social communication	0	0	0	0	1	K2EKA_K03 K2EKA_K01	15	25	1	0	0.6	T/Z*	z	0	0	1	КО
2	W12EKA-SM0502W	Optical Fibers and Optocommunications	2					K2EKA_W02 K2EKA_W04	30	50	2	2	1.3	T/Z*	E(W)	0	DN		PD/K
3	W12EKA-SM0502L	Optical Fibers and Optocommunications			1			K2EKA_U06	15	50	2	2	0.6	T	Z	0	DN	2	K
4	W12EKA-SM0502S	Optical Fibers and Optocommunications					1	K2EKA_U08	15	50	2	2	0.6	T/Z*	Z	0	DN	2	K
5	W13EKA-SM1642W	Numerical methods in differential equations	2					K2EKA_W01	30	50	2	2	1.2	T/Z*	Z	0	DN		PD
6	W13EKA-SM1642L	Numerical methods in differential equations			2			K2EKA_U04	30	80	3	3	1.2	T	Z	0	DN	3	PD
7	W12EKA-SM0500W	Numerical methods and optimization	2					K2EKA_W05	30	50	2	2	1.2	T/Z*	Z	0	DN		K
8	W12EKA-SM0500L	Numerical methods and optimization			K2EKA_U04 K2EKA_U05	30	80	3	3	1.2	T	Z	0	DN	3	K			
		Total	6	0	5	0	2		195	435	17	16	7.9	-	-	-	16	11	-

Optional courses / groups of courses (minimum 165hours)

Number of ECTS points 10

No.	Course/	Name of course/group of courses (denote group of courses with	W	eekly	numbe	r of ho	ours	Learning effect	Number	of hours	Numbe	r of ECT	S points	course/a	Way ³ of		ourse/grou	p of cour	ses
	group of courses code	symbol GK)	lec	cl	lab	pr	sem	symbol	ΩZZ	CNPS	Total	DN- classe s	BU¹ classe s		crediting	University- wide ⁴	Concerning scientific activities ⁵	Practical ⁶	Type ⁷
1	0	Foreign language I	0	1	0	0	0	K2EKA_U01	15	25	1	0	0.5	T	Z	О	0	1	KO
2	0	Foreign language II	0	3	0	0	0	K2EKA_U02	45	50	2	0	1.5	T	Z	О	0	2	KO
3	W12EKA-SM0503W	Microcontrollers Programming	2					K2EKA_W10	30	50	2	2	1.3	T/Z*	E(W)	0	DN		S
4	W12EKA-SM0503L	Microcontrollers Programming	0		2			K2EKA_U07 K2EKA_U11	30	50	2	2	1.2	Т	z	0	DN		S
5	W12EKA-SM0503P	Microcontrollers Programming				2		K2EKA_UU/ K2EKA_III1	30	50	2	2	1.4	T	Z	0	DN	3	S
6	W12EKA-SM0511W	New Approaches to Electronics and Photonics	2	0	0	0	0	K2EKA_W07 K2EKA_K02	30	30	1	1	1	T/Z*	Z	0	DN	0	S
		Total	4	4	2	2	0		180	255	10	7	6.9	-	-	-	9	5	0

Total in semester 1

W	eekly	numbe	r of ho	ours	Total ZZU	Total CNPS	Total ECTS	DN ¹ classes	BU ¹ classes
lec	cl	lab	pr	sem					
10	4	7	2	2	375	690	27	23	14.8

Semestr 2

Optional courses / groups of courses (specialization AAE) Number of ECTS points 29 Weekly number of hours Number of ECTS point Course/ Number of hours Course/group of courses of Name of course/group of courses (denote group of courses with Learning effect ourse symbol GK) symbol roup of cl lab group of courses code W12EKA-SM0505W K2EKA_W10 DSP Architectures 50 1.3 T/Z* DN 2 W12EKA-SM0505L K2EKA_U07 DSP Architectures 2 30 1.2 T 0 DN S 0 0 0 80 3 Z W12EKA-SM0507W 2 K2EKA_W10 Hardware Programming 0 0 0 0 30 50 2 2 1.3 T/Z^{\ast} E 0 DN 0 S K2EKA_U05 Hardware Programming 0 W12EKA-SM0507L 0 2 0 K2EKA_U06 80 3 1.2 T Z 0 DN S K2EKA_U11 W12EKA-SM0506W Lasers and Applications 0 0 0 K2EKA_W04 50 2 1.2 T/Z* 0 DN S W12EKA-SM0506L Lasers and Applications 2 0 K2EKA_u08 30 50 2 2 1.2 Т Z 0 DN 2 S 0 W12EKA-SM0508W 0 K2EKA_W09 30 50 1.2 T/Z* 0 DN S Analog Peripherals of Digital Sys W12EKA-SM0508L Analog Peripherals of Digital Sys K2EKA_U08 30 55 1.2 Z 0 DN S W12EKA-SM0508P Analog Peripherals of Digital Sys 0 K2EKA_U07 15 25 0.7 0 DN S 10 W12EKA-SM0509W Machine Learning Methods 0 0 0 K2EKA_W09 15 25 0.6 T/Z* Z 0 DN S 11 W12EKA-SM0509L 1 K2EKA_U06 30 Т Z 0 DN S Machine Learning Methods 0 0 15 0.6 0 12 W12EKA-SM0509S Machine Learning Methods 0 0 0 1 K2EKA_U06 15 25 0.6 T/Z* Z 0 DN S 13 W12EKA-SM0510W RF Circuits Design 0 0 0 K2EKA_W08 50 2 0.6 T/Z^{\ast} Z 0 DN S 14 W12EKA-SM0510L RF Circuits Design K2EKA_U08 30 55 1.2 0 DN S 15 W12EKA-SM0510S RF Circuits Design 0 0 K2EKA_U07 15 25 0.7 T Z 0 DN S K2EKA_U03 K2EKA_U09 16 W12EKA-SM0504S Specialization seminar 0 0 50 2 2 1.8 T/Z* Z 0 DN 2 S K2EKA_K02

10 0 11 1 Total in semester 2

Total

We	eekly i	numbe	r of ho	urs	Total ZZU	Total CNPS	Total ECTS	DN ¹ classes	BU ¹ classes
			Γ-						
10	0	11	1	5	405	750	29	29	16.6

K2EKA_K04

750

29 29 16.6

30

19

Semestr 3

Obligatory courses / groups of courses

Number of ECTS points 3

		iguior y courses / g	cups of courses																	
,	No.	Course/	Name of course/group of courses (denote group of courses with	W	eekly	numbe	er of l	ours	Learning effect		of hours	Numbe	r of ECT	'S points		Way ³ of		ourse/group	p of cours	es
	10.	group of courses code	symbol GK)	lec	cl	lab	pr	sem	symbol	ΩZZ	CNPS	Total	DN ⁵ classes	- s	roup of courses	crediting	University- wide ⁴	Concerning scientific activities ⁵	Practicaf ⁶	Type ⁷
Ī	1	W08W12-SM0020S	Entrepreneurship	0	0	0	0	1	K2EKA_K02 K2EKA_K03	15	50	2	0	0.6	T/Z*	z	0	0	0	КО
	2	W08W12-SM0020W	Entrepreneurship	1	0	0	0	0	K2EKA_W03	15	25	1	0	0.6	T/Z*	Z	0	0	0	KO
			Total	1	0	0	0	1	-	30	75	3	0	1.2	-	-	-	0	0	-

Optional courses / groups of courses (minimum 330 hours)

Number of ECTS points 31

~ F	8 F -	or courses (minimum eco nours)	1 10111		01 20	- P	Omto												
No.	Course/	Name of course/group of courses (denote group of courses with	w	eekly	numbe	er of h	ours	Learning effect	Number	of hours	Numbe	r of ECT	'S points		Way ³ of		ourse/grou	p of cours	es
110.	group of courses code	symbol GK)	lec	cl	lab	pr	sem	symbol	NZZ	CNPS	Total	DN ⁵ classes	BU¹ classes	roup of courses	crediting	University- wide ⁴	Concerning scientific activities ⁵	Practicaf ⁶	Type ⁷
1	W12EKA-SM0513D	Final project (naster thesis)	0	0	0	7	0	K2EKA_U12 K2EKA_U13 K2EKA_K02	105	450	16	16	4.2	T	z	0	DN	10	K
2	W12EKA-SM0512S	Diploma Seminar	0	0	0	0	2	K2EKA_U09 K2EKA_U10 K2EKA_K02 K2EKA_K04	30	50	2	2	1.2	T/Z*	z	0	DN	2	K
3	W12EKA-SM0501W	Computer Operating Systems	1					K2EKA_W08	15	25	1	1	0.6	T/Z*	Z	0	DN		S
4	W12EKA-SM0501L	Computer Operating Systems	0	0	2	0	0	K2EKA_U07	30	55	2	2	1.2	T	Z	0	DN	2	S
5	W12EKA-SM0523W	LabVIEW programming	1	0	0	0	0	K2EKA_W08	15	30	2	2	0.6	T/Z*	Z	0	DN	0	S
7	W12EKA-SM0523P	LabVIEW programming	0	0	0	2	0	K2EKA_U06	30	80	2	2	1.4	T	Z	0	DN	2	S
8	EKA-SM00300AAE	Optional courses from table below (minimum 6ECTS)	3 0 3 0 0		Table below	90	150	6	6	3.6	tab.bel	Z	0	DN	3	S			
		Total	5	5 0 5 9 2				0	315	840	31	31	12.8	0	0	0	0	23	0

Total in semester 3

	W	eekly 1	numbe	r of ho	ours	Total ZZU	Total CNPS	Total ECTS	DN ¹ classes	BU ¹ classes	
	lec	cl	lab	pr	sem						
ı	6	0	5	9	3	345	915	34	31	15	

Ontional courses / groups of courses (minimum 6ECTS)

Opt	ionai courses / groups o	of courses (minimum 6ECTS)																	
	Course/	Name of course/group of courses (denote group of courses with	W	eekly	numbe	r of h	ours	Learning effect	Number	of hours	Numbe	r of ECT	S points		Way ³ of		urse/grou	p of cours	ses
No.	group of courses code	symbol GK)	lec	cl	lab	pr	sem	symbol	ΩZZ	CNPS	Total	DN ⁵ classes	BU¹ classes	roup of courses	crediting		Concerning scientific activities ⁵	Practicaf ⁶	Type ⁷
1	W12EKA-SM0518W	Real-time operating systems	2	0	0	0	0	K2EKA_W10	30	50	2	2	1.2	T/Z*	Z	0	DN	0	S
2	W12EKA-SM0518L	Real-time operating systems	0	0	2	0	0	K2EKA_U06	30	50	2	2	1.2	T	Z	0	DN	2	S
3	W12EKA-SM0517W	Optics and Nonlinear Optics	1	0	0	0	0	K2EKA_W04	15	25	1	1	0.6	T/Z*	Z	0	DN	0	S
4	W12EKA-SM0517C	Optics and Nonlinear Optics	0	1	0	0	0	K2EKA_U08	15	25	1	1	0.6	T	Z	0	DN	1	S
5	W12EKA-SM0515W	IoT modules	1	0	0	0	0	K2EKA_W08	15	25	1	1	0.6	T/Z*	Z	0	DN	0	S
6	W12EKA-SM0515P	IoT modules	0	0	0	1	0	K2EKA_U06	15	25	1	1	0.6	T	Z	0	DN	1	S
7	W12EKA-SM0522W	Electrotechnics	2	0	0	0	0	K2EKA_W08	30	50	2	2	1.2	T/Z*	Z	0	DN	0	S
8	W12EKA-SM0522L	Electrotechnics	0	0	1	0	0	K2EKA_U08	15	25	1	1	0.6	T	Z	0	DN	1	S
9	W12EKA-SM0514W	Advanced Obective Programming	2	0	0	0	0	K2EKA_W10	30	50	2	2	1.2	T/Z*	Z	0	DN	0	S
10	W12EKA-SM0514L	Advanced Obective Programming	0	0	2	0	0	K2EKA_U06	30	50	2	2	1.2	T	Z	0	DN	2	S
		Total (minimum to be chosen)	3	3 3				90	150	6	6	3.6					3	-	

2. Set of examinations in semestral arrangement

Kod kursu/grupy kursów	Nazwy kursów/ grup kursów kończących się egzaminem	Semestr
W12EKA-SM0503	Microcontroller Programming	1
W12EKA-SM0502L	Optical Fibres And Optocommunication	1
W12EKA-SM0507L	Hardware Programming	2
W12EKA-SM0505L	DSP Architecture	2

3. Numbers of allowable deficit of ECTS points after particular semesters

Semester	Numbers of allowable deficit of ECTS points
1	8
2	8

Opinion of student government legislative body	
Date	Name and surname, signature of student representative
Date	Dean's signature

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional – T, remote – Z, remote in synchronous mode - Z*

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

Summary of AAE

1 semester 2 semester 3 semster sum in 3 semesters

	-	,			-						
W	eekly	numbe	r of ho	ours	Łączna liczba godzin ZZU	Łączna liczba godzin CNPS	Łączna liczba punktów ECTS	Liczba punktów ECTS	Liczba punktów ECTS	P	DN
lec	cl	lab	pr	sem			ECIS	zajęć DN ¹	zajęć BU¹		
10	4	7	2	2	375	690	27	23	14.8	17	23
10	0	11	1	5	405	750	29	29	16.6	20	29
6	0	5	9	3	345	915	34	31	14.0	19	31
26	4	23	12	10	1125	2355	90	83	45.4	56	83

DESCRIPTION OF THE PROGRAM OF STUDIES

Main field of study: ELECTRONICS Profile GENERAL ACADEMIC

Level of studies SECOND Form of studies FULL TIME

1. General description

1.1 Number of semesters: 3	1.2 Total number of ECTS points necessary to complete studies at a given level:90
1.3 Total number of hours:1125	1.4 Prerequisites (particularly for second-level studies): Candidates for Master's studies in the field of Electronics may enroll after obtaining at least the title of a professional engineer in admitted fields of study. The detailed conditions and procedure of recruitment applicable for a given academic year are approved annually by the Senate of Wrocław University of Science and Technology and announced by an appropriate internal regulation
1.5 Upon completion of studies graduate obtains	1.6 Graduate profile, employability:
professional degree of: Master of Science (MSc)	This course will give students multidisciplinary knowledge of electronics, optoelectronics, microwaves and telecommunication. It will enable them to obtain theoretical and practical knowledge in designing applied electronic systems based on analogue and digital techniques, laser, fibre and microwave electronics as well as gaining expertise in microprocessors, programmable logic applications and signal processing. Additionally students will

gain laboratory experience and become familiar with work practices of research laboratories. Students who complete this three-semester course will acquire the experience necessary for a professional career in research units, universities and industry 1.8 Indicate connection with University's mission and its 1.7 Possibility of continuing studies: development strategy: After completing the second-cycle studies, it is possible to continue The study program is fully correlated with the mission of the education at a Doctoral School or at postgraduate studies. university and its development strategy adopted by the Senate of the Wrocław University of Science and Technology. The study program uses in particular the sectoral models defined in point 7 of the Wrocław University of Science and Technology Development Plan: the Education Model and the Study Model, in order to ensure high quality of teaching. Students of the faculty follow the study model defined in the development strategy of the Faculty of Electronics, Photonics and Microsystems. The concept of education at the Faculty takes into account the perspective of the development of higher education in the years 2015-2030 defined by the Ministry of Science and Higher Education. Educating at general-academic studies, the Faculty directs its offer to people interested in development and raising qualifications. Ultimately, studies with this profile should prepare professional staff for the economy and science. Education in the field of Electronics is concurrent with the strategic framework for smart specializations of Lower Silesia in the field of electronics and related areas and the National Smart Specializations in the field of smart technologies and industrial processes.

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

2. Detailed description

- 2.1 Total number of learning outcomes in the program of study: W (knowledge) =. ...13, U (skills) = ..10., K (competences) =4..., W + U + K =27.....
- 2.2 For the main field of study assigned to more than one discipline the number of learning outcomes assigned to the discipline: D1 100%

D1 (major) ..100%. (this number must be greater than half the total number of learning outcomes)

- 2.3 For the main field of study assigned to more than one discipline percentage share of the number of ECTS points for each discipline: D1n/a......% ECTS points
- 2.4a. For the general academic profile of the main field of study the number of ECTS points assigned to the classes related to the University's academic activity in the discipline or disciplines to which the main field of study is assigned DN (must be greater than 50% of the total number of ECTS points from 1.2) ..83.....
- 2.4b. For the practical profile of the main field of study the number of ECTS points assigned to the classes shaping practical skills (must be greater than 50% of the total number of ECTS points from 1.2)-n/a
 - 2.5 Concise analysis of compliance of the assumed learning outcomes with the needs of the labor market

Before the launch of the AAE specialization several representatives of companies active in electronics and similar industries had been consulted. Moreover, the syllabuses were analysed of various educational institutions, both in Poland and abroad. The curriculum makes an effort to meet the market needs for competences common for electrical engineering, automation and telecommunications. The teaching result is an expanded theoretical and practical expertise in the design of advanced electronic circuits using analogue and digital circuits, lasers, optical fibers and microwave techniques, as well as a thorough ability to use the microprocessor and programmable logic systems and signal processors. Education provided through this specialization ensures familiarity with specialist English terminology and gives the graduate the ability to combine the various aspects of analogue and digital electronics and optoelectronics. AAE graduates gain a competitive advantage in the labour market particularly in the case of

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

multinationals dealing with digital and analogue electronics and optoelectronics in their broadest sense as well as those, in which exchange of information in English is the basis for efficient communication. By making the research labs available to students, the AAE curriculum allows them to learn about independent and team research & scientific work, thus meeting the needs of scientific and research & scientific institutions in terms of providing able and creative candidates for PhD studies or employment as research and teaching assistants.

2.6. The total number of ECTS points that a student must obtain in classes requiring direct participation of academic teachers or other persons conducting classes and students (enter the sum of ECTS points for courses / groups of courses marked with the BU¹ code) ..49,5.. ECTS

2.7. Total number of ECTS points, which student has to obtain from basic sciences classes

Number of ECTS points for obligatory subjects	6
Number of ECTS points for optional subjects	0
Total number of ECTS points	6

2.8. Total number of ECTS points, which student has to obtain from practical classes, including project and laboratory classes (enter total number of ECTS points for courses/group of courses denoted with code P)

Number of ECTS points for obligatory subjects	11
Number of ECTS points for optional subjects	45
Total number of ECTS points	56

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

- 2.9. Minimum number of ECTS points, which student has to obtain doing education blocks offered as part of University-wide classes or other main field of study (enter number of ECTS points for courses/groups of courses denoted with code O)
 - ...9.... ECTS points
- 2.10. Total number of ECTS points, which student may obtain doing optional blocks (min. 30% of total number of ECTS points) ...70. ECTS points

3. Description of the process leading to learning outcomes acquisition:

Following the curriculum, students attend organized classes. According to the regulations of higher education at Wrocław University of Science and Technology, the student is required to participate in classes. Classes are conducted in the forms specified in the regulations of studies, with the use of both traditional methods and didactic tools as well as the possibilities offered by the university e-learning platform. Outside of class hours, the tutors are available to students during the consultation hours designated and announced on the Faculty's website. An important element of the learning process is the student's own work, consisting in preparing for classes (on the basis of materials provided by the lecturers and recommended literature), studying literature, preparing reports and reports, preparing for tests and exams.

Each learning outcome is assigned the codes of the courses defined in the study program. Successful completion of these courses (this course) means obtaining the given effect. Courses are credited on the basis of the forms of control of acquired knowledge, skills and social competences, defined in the course cards. Failure to achieve the learning outcomes assigned to the course by the student results in the failure to complete the course and the necessity to do it again.

Completion of each semester of studies is conditional upon obtaining the number of ECTS points in a specific study program, which is tantamount to achieving most of the learning outcomes envisaged in a given semester. The remaining results are achieved by the student recompleting the failed courses in subsequent semesters of study.

Successful completion of studies is possible after the student achieves all learning outcomes specified in the study program.

The quality of the classes and the achievement of learning outcomes are controlled by the Department's Education Quality Assurance System, including, inter alia, procedures for creating and modifying education programs, individualizing study programs, implementing the teaching process and diplomas. Quality control of the education process includes the evaluation of the learning outcomes achieved by students. Quality control of the classes is supported by hospitals and surveys, carried out according to strictly defined departmental procedures.

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

4. List of education blocks:

4.1. List of obligatory blocks:

4.1.1 List of general education blocks

4.1.1.1 *Liberal-managerial subjects* block (min. ..5... ECTS points):

	Course/	Name of course/group of courses	W	eekl	y nu hour		r of			nber of ours		per of l	ECTS	Form ² of course/gr	Way ³ of	С	ourse/group	of courses	
No.	group of courses code	(denote group of courses with symbol GK)	of courses with		oup of courses cl	crediting lab	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷									
1	W08W12- SM0002S	Social communication					1	K2EKA_K03 K2EKA_K01	15	25	1		0.6	T/Z*	Z	0		1	КО
2	W08W12- SM0020G	Entrepreneurship					1	K2EKA_K02 K2EKA_K03	15	25	2		0.6	T/Z*	Z	0			КО
2a	W08W12- SM0020G	Entrepreneurship	1	0	0	0	0	K2EKA_W03	15	50	1		0.6	T/Z*	Z	0			КО
		Total	1	0	0	0	2	ı	45	150	5	0	3	ı	ı	_	-	1	

Altogether for general education blocks

	Total r	number o	f hours		Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ⁵	Number of ECTS points for BU classes ¹
lec	cl	lab	pr	sem					
1	0	0	0	2	45	150	5	0	3

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

4.1.2 List of basic sciences blocks

4.1.2.1 Mathematics block

No ·	Course/ group of	Name of course/group of courses	Wee	ekly n	umbe	r of h	ours	Learning effect	Numl ho	ber of urs	Numbe	er of ECTS	points	Form ² of		Co	ourse/group	of courses	
	courses code	(denote group of courses with symbol GK)	lec	cl	lab	pr	sem	symbol	ZZU	CNPS	Total	DN ⁵ classes	BU ¹ classes	course/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷
1	W13EKA- SM1642W	Numerical methods in differential equations	2					K2EKA_W01	30	50	2	2	1.2	T/Z*	Z		DN		PD
1A	W13EKA- SM1642L	Numerical methods in differential equations			2			K2EKA_U04	30	80	3	3	1.2	T	Z		DN	3	PD
		Total	2		2				60	130	5	5	2,4					3	

4.1.2.2 Physics block

No. Course/ group of courses code		Name of course/group of courses	We	eekly 1	numbe	r of ho	ours	Learning effect symbol	Numl ho	per of ars	Numbe	er of ECTS	points	Form ² of	w3 . c	Co	ourse/group	of courses	
	courses code	(denote group of courses with symbol GK)	lec	cl	lab	pr	sem		ZZU	CNPS	Total	DN ⁵ classes	BU ¹ classes	ourse/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷
1	W12EKA- SM0502W	Optical Fibers and Optocommunications	1					K2EKA_W02	15	25	1	1	0,6	T/Z*	E(w)		DN		K
		Total	Total 1 0 0 0 0 - 15 25 1 1 0		0,6					0									

Altogether for basic sciences blocks:

	Total 1	number o	of hours		Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ⁵	Number of ECTS points for BU classes ¹
lec	cl	lab	pr	sem					
3	0 2 0 0		0	75	155	6	6	3	

4.1.3 List of the main field of study blocks

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

 $^{^2}$ Traditional - T, remote - Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

4.1.3.1 Obligatory main field of study blocks

No ·	Course/ group of	Name of course/group of courses	Weel	kly nu	mbe	r of ho	ours	Learning effect	Numb hou		Num	ber of E0 points	CTS	Form ² of		С	ourse/group	of courses	i
	courses code	(denote group of courses with symbol GK)	l e c	cl l	ab	pr	se m	symbol	ZZU	CNPS	Total	DN ⁵ classe s	BU ¹ classe s	course/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷
1	W12EKA- SM0502W	Optical Fibers and Optocommunications	1					K2EKA_W02 K2EKA_W04	15	25	1	1	0,7	T/Z*	E(W)		DN		PD/K
1A	W12EKA- SM0502L	Optical Fibers and Optocommunications			1			K2EKA_U06	15	50	2	2	0,6	T	Z		DN	2	K
1B	W12EKA- SM0502S	Optical Fibers and Optocommunications					1	K2EKA_U08	15	50	2	2	0,6	T/Z*	Z		DN	2	K
2	W12EKA- SM0500W	Numerical methods and optimization	2					K2EKA_W05	30	50	2	2	1,2	T/Z*	Z		DN		K
2A	W12EKA- SM0500L	Numerical methods and optimization			2			K2EKA_U04 K2EKA_U05	30	80	3	3	1,2	T	Z		DN	3	K
3	W12EKA- SM0511W	New Approaches to Electronics and Photonics	2					K2EKA_W07 K2EKA_K02	30	30	1	1	1	T/Z*	Z		DN	0	S
		Razem	5		3		1		135	285	11	11	5,3					7	

Altogether (for main field of study blocks):

	Total r	number o	f hours		Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ⁵	Number of ECTS points for BU classes ¹
lec	cl	lab	pr	sem					
7		5		1	136,5	285	11	11	5,3

4.2 List of optional blocks

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

 $^{^2}$ Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

4.2.1 List of general education blocks

4.2.1.2 Foreign languages block (min. ...3..... ECTS points):

No.	Course/ group of	Name of course/group of courses	We	ekly nı	umber	of hou	rs	Learning effect		nber of ours	Numbe	er of ECTS	points	Form ² of		Co	ourse/group	of courses	
	courses code	(denote group of courses with symbol GK)	lec	lec cl lab pr e m		symbol	ZZ U	CNPS	Total	DN ⁵ classes	BU ¹ classes	course/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷		
1		Foreign Language I		1				K2EKA_U01	15	25	1		0.5	T	Z	О		1	KO
2		Foreign Language II		3 K2E		K2EKA_U02	45	50	2		1.5	T	Z	0		2	KO		
	·	Total		4					60	75	3	0	2					3	

Altogether for general education blocks:

	Total r	number o	f hours		Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ⁵	Number of ECTS points for BU classes ¹
lec	cl	lab	pr	sem					
0	0	4	0	0	60	75	3	0	2

4.2.4 List of specialization blocks

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

4.2.4.1 *Specialization subjects (AAE)* blocks (min. .65.. ECTS points):

	Course/	Name of course/group of courses	We	ekly h	nun		of			nber of ours	Number	of ECTS	points	Form ² of		Co	ourse/group	of courses	
No.	group of courses code	(denote group of courses with symbol GK)	lec	lec	oəl	lec	lec	Learning effect symbol	ZZU	CNPS	Total	DN ⁵ classes	BU ¹ classes	course/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷
1	W12EKA- SM0505W	DSP Architectures	2	0	0	0	0	K2EKA_W10	30	50	2	2	1,3	T/Z*	Е		DN		S
1A	W12EKA- SM0505L	DSP Architectures	0	0	2	0	0	K2EKA_U07	30	80	3	3	1,2	T	Z		DN	3	S
2	W12EKA- SM0501W	Computer Operating Systems	1	0	0	0	0	K2EKA_W08	15	25	1	1	0,6	T/Z*	Z		DN		S
2A	W12EKA- SM0501L	Computer Operating Systems	0	0	2	0	0	K2EKA_U07	30	55	2	2	1,2	T	Z		DN	2	S
3	W12EKA- SM0508L	Analog Peripherals of Digital Sys	2	0	0	0	0	K2EKA_W09	30	50	2	2	1,2	T/Z*	Z		DN		S
3A	W12EKA- SM0508P	Analog Peripherals of Digital Sys	0	0	2	0	0	K2EKA_U08	30	55	2	2	1,2	T	Z		DN	2	S
3B	W12EKA- SM0508W	Analog Peripherals of Digital Sys	0	0	0	1	0	K2EKA_U07	15	25	1	1	0,7	T	Z		DN	1	S
4	W12EKA- SM0503W	Microcontrollers Programming	2	0	0	0	0	K2EKA_W10	30	50	2	2	1,3	T/Z*	E(W)		DN		S
4A	W12EKA- SM0503L	Microcontrollers Programming	0	0	2	0	0	K2EKA_U07 K2EKA_U11	30	50	2	2	1,2	T	Z		DN		S
4B	W12EKA- SM0503P	Microcontrollers Programming	0	0		2	0	K2EKA_U07 K2EKA_U11	30	50	2	2	1,4	T	Z		DN	3	S
5	W12EKA- SM0506L	Lasers and Applications	2	0	0	0	0	K2EKA_W04	30	50	2	2	1,2	T/Z*	Z		DN		S
5A	W12EKA- SM0506W	Lasers and Applications	0	0	2	0	0	K2EKA_u08	30	50	2	2	1,2	T	Z		DN	2	S
6	W12EKA- SM0509L	Machine Learning Methods	1	0	0	0	0	K2EKA_W09	15	25	1	1	0,6	T/Z*	Z		DN		S
6A	W12EKA- SM0509S	Machine Learning Methods	0	0	1	0	0	K2EKA_U06	15	30	1	1	0,6	T	Z		DN	1	S
6B	W12EKA- SM0509W	Machine Learning Methods	0	0	0	0	1	K2EKA_U06	15	25	1	1	0,6	T/Z*	Z		DN	1	S
7	W12EKA- SM0504S	Specialization seminar	0	0	0	0	3	K2EKA_U03 K2EKA_U09 K2EKA_K02 K2EKA_K04	45	50	2	2	1,8	T/Z*	Z		DN	2	S
8	W12EKA- SM0510W	RF Circuits Design	1	0	0	0	0	K2EKA_W08	15	25	2	2	0,6	T/Z*	Z		DN		S

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

8A	W12EKA- SM0510L	RF Circuits Design	0	0	2	0	0	K2EKA_U08	30	55	2	2	1,2	Т	Z		DN	2	S
8B	W12EKA- SM0510S	RF Circuits Design	0	0	0	0	1	K2EKA_U07	15	50	1	1	0,7	Т	Z		DN	2	S
9	W12EKA- SM0507W	Hardware Programming	2	0	0	0	0	K2EKA_W10	30	50	2	2	1,3	T/Z*	Е		DN		S
9A	W12EKA- SM0507L	Hardware Programming	0	0	2	0	0	K2EKA_U05 K2EKA_U06 K2EKA_U11	30	80	3	3	1,2	Т	Z		DN	3	S
10	W12EKA- SM0523W	LabVIEW programming	1	0	0	0	0	K2EKA_W08	15	30	1	1	0,6	T/Z*	Z		DN		S
10A	W12EKA- SM0523P	LabVIEW programming	0	0	0	2	0	K2EKA_U06	30	80	3	3	1,4	Т	Z		DN	2	S
11	W12EKA- SM0512S	Diploma Seminar	0	0	0	0	2	K2EKA_U09 K2EKA_U10 K2EKA_K02 K2EKA_K04	30	50	2	2	1,2	T/Z*	Z		DN	2	K
11	W12EKA- SM0513D	Final project (naster thesis)				7		K2EKA_U12 K2EKA_U13 K2EKA_K02	105	450	16	16	4,2	Т	Z		DN	10	K
12	EKA- SM00300AAE	Optional courses from table below (minimum 6ECTS)	3			3			45	75	6	6	3,6	6	6	3.6	DN	tab	
	•	Razem	17		3	34			765	1665	66	66	33,3		·			·	

Altogether for specialization blocks:

	Total number of hours			Total number of ZZU hours	Total number of CNPS hours	Total number of ECTS points	Total number of ECTS points for DN classes ⁵	Number of ECTS points for BU classes ¹	
lec	cl	lab	pr	sem					
17		3	34		765	1665	66	66	33,3

4.2.4.1a Elected courses – (6 pkt ECTS) (minimum 6 ECTS with 3 BU and P(3))

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

N o	Course/ group of	Name of course/group of		eekly 1	number	of hou	rs	Learning effect	Number of hours		Number of ECTS points			Form ² of		Course/group of courses			
	courses code	courses (denote group of courses with symbol GK)	lec	cl	lab	pr	sem	symbol	ZZU	CNPS	Total	DN ⁵ classe s	BU ¹ classe s	course/gr oup of courses	Way ³ of crediting	University -wide ⁴	Concerni ng scientific activities ⁵	Practical ⁶	Type ⁷
A	W12EKA- SM0518W	Real-time operating systems	2	0	0	0	0	K2EKA_W10	30	50	2	2	1.2	T/Z*	Z		DN		S
A	W12EKA- SM0518L	Real-time operating systems	0	0	2	0	0	K2EKA_U06	30	50	2	2	1.2	T	Z		DN	2	S
В	W12EKA- SM0517W	Optics and Nonlinear Optics	1	0	0	0	0	K2EKA_W04	15	25	1	1	0.6	T/Z*	Z		DN		S
В	W12EKA- SM0517C	Optics and Nonlinear Optics	0	1	0	0	0	K2EKA_U08	15	25	1	1	0.6	Т	Z		DN	1	S
С	W12EKA- SM0515W	IoT modules	1	0	0	0	0	K2EKA_W08	15	25	1	1	0.6	T/Z*	Z		DN		S
С	W12EKA- SM0515P	IoT modules	0	0	0	1	0	K2EKA_U06	15	25	1	1	0.6	Т	Z		DN	1	S
D	W12EKA- SM0522W	Electrotechnics	2	0	0	0	0	K2EKA_W08	30	50	2	2	1.2	T/Z*	Z		DN		S
D	W12EKA- SM0522L	Electrotechnics	0	0	1	0	0	K2EKA_U08	15	25	1	1	0.6	Т	Z		DN	1	S
Е	W12EKA- SM0514W	Advanced Obective Programming	2	0	0	0	0	K2EKA_W10	30	50	2	2	1.2	T/Z*	Z		DN		S
Е	W12EKA- SM0514L	Advanced Obective Programming	0	0	2	0	0	K2EKA_U06	30	50	2	2	1.2	Т	Z		DN	2	S
		Total (MINIMUM to choose)	3		3	3			90	150	6	6	3,6					3	

4.3 Training block - concerning principles of training crediting - not applicable. ...

4.4 "Diploma dissertation" block (if it is foreseen at first level studies)

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

Type of diploma dissertation	MSc							
Number of diploma dissertation semesters	Number of ECTS points	Code						
1	16, P(10)	ETEA00220						
Character of diploma dissertation								
RESEAR	СН							
Number of BU ¹ ECTS points 4,2								
Number of dn ¹ ECTS points	16							

5. Ways of verifying assumed learning outcomes

Type of classes	Ways of verifying assumed learning outcomes
lecture	written exam, oral exam, e-exam, written work prepared on the basis of lectures and recommended literature, oral or written test, lecture discussion, final test, active participation in lectures, oral answer, quiz, test in the form of e-test
class	oral answers, quizzes, tests, e-tests, discussions, evaluation of solutions to exemplary exercises, final test, written reports on exercises, results of partial tests, reports, active participation in classes
laboratory	preparation for laboratory classes (quizzes); homework; evaluation of performed laboratory tasks; presentation of the results of the performed exercises along with their discussion and conclusions; final exercise reports
project	evaluation of the final project documentation, implementation report, results of project tasks, evaluation of performed tests, evaluation of the prepared report, evaluation of the project presentation, evaluation of formal project implementation, attendance, analysis of the progress, work, consultation, evaluation of the team leader, evaluation of teamwork skills, adherence to the schedule, team activity, the ability to apply the principles of project management, project defense, participation in problem discussions
seminar	evaluation of the preparation of the presentation and the delivery of a seminar on a selected topic, active participation in seminar classes, evaluation of the quality of seminar presentations, participation in problem discussions
diploma dissertation	prepared thesis - the formal and substantive aspects

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

6. Range of diploma examination

Question topics for the diploma exam for the academic year are determined by the Electronics Program Committee..

7. Requirements concerning deadlines for crediting courses/groups of courses for all courses in particular blocks

No.	Course / group of courses code	Name of course / group of courses	Crediting by deadline of (number of semester)
1		Foreign Language I	2
2		Foreign Language II	2

8. Plan of studies (attachment no. ...4...)

Approved by faculty st	sudent government legislative body:	
 Date	name and surname, signature of student representative	
 Date	Dean's signature	
*delete as appropriate		

¹BU – number of ECTS points assigned to hours of classes requiring direct participation of academic teachers and other persons conducting classes

²Traditional - T, remote – Z, remote in synchronous mode - *

³Exam – enter E, crediting – enter Z. For the group of courses – after the letter E or Z - enter in brackets the final course form (lec, cl, lab, pr, sem)

⁴University-wide course /group of courses – enter O

⁵DN - number of ECTS points assigned to the classes related to the University's academic activity in the discipline/disciplines to which the main field of study is assigned

⁶Practical course / group of courses – enter P. For the group of courses – in brackets enter the number of ECTS points assigned to practical courses

⁷KO – general education courses, PD – basic sciences courses, K – main field of study courses, S – specialization courses

Faculty of Electronics, Fotonics and Microsystems (W12N) / Department of Field Theory, Electronic Circuits and Optoelectronics (K35W12ND02)

SUBJECT CARD

Name of subject in Polish: Architektury cyfrowego przetwarzanie sygnałów

Name of subject in English: **DSP Architectures**Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0505

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		80		
Form of crediting	Examina- tion		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes			3.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basics of digital signal processing
- 2. Basics of C language programming
- $3.\,$ Basics of microcontroller program development tools

SUBJECT OBJECTIVES

- C1. Getting to know the architecture and operation of DSP processing structures, in particular multi-core processors supporting DSP processing
- C2. Learn and become skilled in using code generation tools, running signal processors and their environment
- C3. Ability to identify and evaluate processor chip architectures that support signal processing and hardware to facilitate multi-core processor designs

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

PEU_W01 - As a result of the course, the student should be familiar with the architectures and operations of DSP processing structures, particularly signal microcontrollers.

Relating to skills:

PEU_U01 - As a result of the classes the student should be able to use development tools starting from the installation stage through configuration and preparation to running and debugging the program

	PROGRAM CONTENT	
	Lecture	Number of hours
Lec1	Requirements, introduction to signal processing, peripheral tasks, introduction to DSP technology	2
Lec2	Basic architecture of DSP controllers and its incorporation into multicore structures on the example of STM32MP family, basic mechanisms of efficient operation.	2
Lec3	Data representation in DSP, limitations, implications, IQ-math library support for fixed-point structures.	2
Lec4	From analog world to vector digital representation of analog signal.	2
Lec5	Space of time and frequency - Discrete Fourier Transform a useful tool - a connector of these two spaces.	2
Lec6	Accelerate signal analysis with the Fast FFT transform.	2
Lec7	FIR and IIR digital filters.	2
Lec8	Multirate systems - with variable sampling rate, mechanisms of changing the frequency of signal representation - decimation and interpolation. Possibilities, limitations.	2
Lec9	Briefly on quadrature signals, problems and possibilities. The Hilbert transform.	2
Lec10	Data compression and security.	2
Lec11	Linux in DSP processing. Using the system shell and Phyton and C languages in accessing peripherals.	2
Lec12	Using Raspberry-Pi for signal processing. Initialization of basic blocks, programming.	2
Lec13	Using the OpenCV library to process images in a recognized environment.	2
Lec14	Neural networks in DSP processing.	2
Lec15	Credit test	2
	Total hours:	30

	Laboratory	Number of hours
Lab1	Signal processing environment in the lab, - CubeIDE, introduction to using STM32 family, initialization and basic blocks.	2
Lab2	STM32MP1 lab module - structure and application	2
Lab3	DAC usage and support	2
Lab4	DDS technology and implementation	2
Lab5	Basic signal processing path, from ADC to DAC - preparation and start-up	2

Lab6	FIR and IIR filters and its implementation in the system	2
Lab7	Fast Fourier Transform	2
Lab8	Linux for STM32MP1 system.	2
Lab9	Inter-core Communication in STM32MP1	2
Lab10	Raspberry Pi - Preparing and Initialization.	2
Lab11	Operating system under Phyton and bash.	2
Lab12	OPENCV (functions, camera connection, image processing).	2
Lab13	Neural networks - perceptron	2
Lab14, 15	Using neural networks in image processing.	4
	Total hours:	30

TEACHING TOOLS USED

- N1. A traditional and/or online lecture using multimedia tools
- N2. WEB page of the course with shared literature, illustration slides and company documentation
- N3. Developing problems on the course WIKI
- N4. Consultation of problems by the lecturer
- N5. Self-work, preparation for laboratory exercises controlled by an input test
- N6. Hands-on laboratory exercises ending with a report
- N7. Individual studies of technical documentation
- N8. Own work independent studies and preparation for a credit test

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT			
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement	
F1	PEU_W01	Written and oral exams	
F2	PEU_U01	Grade point average for input tests, reports and discussion of problems during the laboratory	
.P(W)=F1; P(L)=F2			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Understanding-digital-signal-processing. 3-th.Ed.- Richard-G. Lyons [Available Polish translation "Wprowadzenie do cyfrowego przetwarzania sygnałów"; Richard G. Lyons; WKŁ 2010]
- [2] The Scientist and Engineer's Guide to DSP- S.W.Smith [Available Polish translation "Cyfrowe przetwarzania sygnałów. Praktyczny poradnik dla inżynierów i naukowców"; Steven W. Smith; BTC]

SECONDARY LITERATURE:

- [1] Data Compression Explained Matt Mahoney; http://mattmahoney.net/dc/dce.html
- [2] Introduction to Computer Organization : ARM Assembly Language Using the Raspberry Pi [https://bob.cs.sonoma.edu/IntroCompOrg-RPi/intro-co-rpi.html]

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Krzysztof Kardach, krzysztof.kardach@pwr.edu.pl

Faculty of Electronics, Fotonics and Microsystems (W12N) / Department of Field Theory, Electronic Circuits and Optoelectronics (K35W12ND02)

SUBJECT CARD

Name of subject in Polish: Analogowe układy peryferyjne systemów cyfrowych

Name of subject in English: Analog Peripherals of Digital Sys

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0508P

Group of courses: Yes

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30	15	
Number of hours of total student workload (CNPS)	50		55	25	
Form of crediting	Crediting with grade		Crediting with grade	Crediting with grade	
For group of courses mark (X) the final course	X				
Number of ECTS points	2		2	1	
including number of ECTS points for practical (P) classes			2.0	1.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2	0.7	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of electronic circuits from the first cycle of studies.

SUBJECT OBJECTIVES

- C1. Obtaining knowledge about the electronic elements, analog circuits and systems used in digital electronic systems.
- C2. Obtaining knowledge about the sources of self-noise and interference in electronic systems, methods of their reduction and their influence on signal integrity.
- C3. Acquiring the ability to design analog circuits and laboratory experiments using advanced measuring equipment for complex electronic circuits and systems.

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

PEU_W01 - The student characterizes the basic requirements for analog circuits in digital systems and the configuration of the electronic system to a given area of application and required parameters. Among other things, the student defines the sources of self-noise and disturbances in electronic systems, explains how to reduce them and their impact on the integrity of signals

Relating to skills:

- PEU_U01 The student conduct a laboratory experiment using advanced measuring equipment for complex electronic circuits.
- PEU_U02 The student selects the configuration of the analog system cooperating with the digital system, taking into account the problems of noise reduction and resistance to external disturbances

PROGRAM CONTENT		
Lecture		
Lec1	Analog front-end circuits	2
Lec2	Sensors and measurement systems	4
Lec3,4	Electric motors and other actuators.	2
Lec5	Analog to digital and digital to analog conversion	2
Lec6	Phase Locked Lopp (PLL) and applications	1
Lec6	Power Factor	1
Lec7	Basic EMC issues; Legal regulations concerning the emission of electromagnetic disturbances; Protection of the electromagnetic environment.	2
Lec8	Sources of interferences and paths of their penetration;	2
Lec9	Electromagnetic radiation in digital systems	2
Lec10	Interference reduction methods	2
Lec11	Internal noise in electronic systems. Noise factor.	2
Lec12	Passive elements in high-frequency systems. Decoupling.	2
Lec13	Protection against electrostatic and atmospheric discharge	2
Lec14	Shielding. Cabling of electronic systems	2
Lec15	Summary	2
	Total hours:	30

Laboratory		
Lab1	Four labs chosen from: Power factor measurements, Stepper motor controller; Phase Locked Loop; Pressure MEMS sensor with AD converter, Operating amplifier – instrumentation amp, Front-end circuits – transconductance amplifier, Front-end circuits – instrumentation amplifier; Optoelectronics – light sources; Optoelectronics - light detectors; Electromechanical relays and SSR; PM motor; Biomedical sensors, Gas sensors	15
Lab2	Four lab chosen from: PCB designing , signal integrity I routing; PCB designing , signal integrity II radiation; Coaxial cable –(trans impedance); PCB designing , signal integrity III – coupling Resonant frequencies of capacitors - types of capacitors ; Resonant frequencies of capacitors - assembling ; Filter effectiveness; PCB designing , signal integrity VI – stabs; PCB designing , signal integrity V – grounding, PCB designing , signal integrity IV – power decoupling	15
	Total hours:	30

	Project	Number of hours
Pr1	Sensors, analogue signal conditioning, front-end circuits Actuator for elektromechanical relay Acctuator for electric motor (PM, BLCD, stepper e.t.c.) EMI emission and immunity to interferences problems. Thermal noise sources – low noise designs and calculations	15
	Total hours:	15

TEACHING TOOLS USED

- N1. Traditional lectures and lectures with the use of multimedia
- N2. Laboratory stands equipped with digital scopes, DDS generator, Power factor measurement setup, stepper motor controller with microcontroller, optical spectrum analyser, electronic materials (PCB boards, electronic elements, tools)
- ${\rm N3.}$ Laboratory stands equipped with digital scop, DDS generator, spectrum analyzer up to 6GHz, PCB with tested circuits
- N4. Self education
- N5. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01	Final test		
F2	PEU_U01	Carrying out laboratory measurements; Report from the conducted laboratories		
F3	PEU_U02	Independent design of the electronic circuit and its presentation		
P(W)=(F1+F2+F3)/3 - all of Fi must be positive				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] H.W.Ott, Electromagnetic Compatibility, WILEY, 2009
- [2] U. Tietze, Ch. Schenk, Electronic circuits. Handbook for Design and Application, Springer, 2009.
- [3] P. Horowitz, W. Hill, The Art. Of Electronics, Cambridge University Press 2015

SECONDARY LITERATURE:

- [1] C. Kitchin, L. Counts, A Designer's Guide To Instrumentation Amplifiers, Analog Devices, 3rd edition, 2006.
- [2] A. Pressman, K. Billings, T. Morey, Switching Power Supply Design, McGraw-Hill
- [3] T. Wiliams, EMC for Product Designers, 4th edition, ELSEVIER, 2009
- [4] M.I. Monterose, Printed Circuit Board Design Techniques for EMC Compliance, Wiley, 2012
- [5] References given during lectures

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jerzy Witkowski, jerzy.witkowski@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: **Komputerowe systemy operacyjne** Name of subject in English: **Computer Operating Systems**

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **obligatory** Subject code: **W12EKA-SM0501**

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30		
Number of hours of total student workload (CNPS)	25		55		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	1		2		
including number of ECTS points for practical (P) classes			2.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic knowledge of C/C++ programming

SUBJECT OBJECTIVES

- C1. Learning how modern operating systems work
- C2. Knowledge of a Data Communication and Protocols for Communications.

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

PEU_W01 - Acquiring knowledge about the operation of modern operating systems - process management, inter-process communication mechanisms, synchronisation problems and methods

Relating to skills:

 $PEU_U01 \ - \ Acquire \ the \ ability \ to \ create \ multi-threaded \ and \ multi-process \ concurrent \ programs \ using \ communication \ and \ synchronization \ mechanisms.$

	PROGRAM CONTENT			
	Lecture			
Lec1	Introduction	1		
Lec2	Processes	2		
Lec3	Interprocess communictaion	2		
Lec4	Threads and concurrency	2		
Lec5	CPU scheduling	2		
Lec6	Synchronization tools	2		
Lec7	Synchronization examples	2		
Lec8	Deadlocks	2		
	Total hours:	15		

Laboratory		Number of hours
Lab1	Introduction. Basics of working with the Unix shell.	2
Lab2	File and directory handling in C/C++ at the system function level. File attributes.	4
Lab3	Process creation and handling with system functions.	4
Lab4	IPC - pipes, message queues, shared memory.	4
Lab6	Creation and handling of threads with system function calls and using mechanisms made available in the latest versions of the C++ standard	4
Lab5	Basic process and thread synchronisation mechanisms.	4
Lab7	Network communication. TCP and UDP protocols	4
Lab8	High level networking libraries	4
	Total hours:	30

TEACHIN	G TOOLS USED
N1. FIXME: Translate	
N2. FIXME: Translate	
N3. FIXME: Translate	

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT							
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement					
F1	PEU_W01	Final test					
F2	PEU_U01	Grading of programmes developed during the laboratory					
P(W)=F1, P(L)=F2	P(W)=F1, P(L)=F2						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] A. Silberschatz, P. Galvin, G. Gagne, "Operating System Concepts"
- [2] R. Stevens, UNIX Network Programming
- [3] System manuals

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Bartłomiej Golenko, bartlomiej.golenko@pwr.edu.pl; Andrzej Lewandowski, andrzej.lewandowski@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Elektrotechnika praktyczna

Name of subject in English: Electrotechnics

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **facultative** Subject code: **W12EKA-SM0522**

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		
Number of hours of total student workload (CNPS)	50		25		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		1		
including number of ECTS points for practical (P) classes			1.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		0.6		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. Learning the basic principles of building low voltage electrical installations
- C2. Getting to know the principles of functioning of electric shock protection systems in low voltage installations
- C3. Effectiveness of protection against electric shock in low voltage installations
- C4. Getting to know the principles of testing low voltage electrical installations

Relating to knowledge:

PEU_W01 - Knows the effects of electric current on the human body, means of electric shock protection and its effectiveness criteria in low voltage installations

Relating to skills:

PEU_U01 - Be able to perform measurements on low voltage electrical installations, evaluate their results and prepare documentation

Relating to social competences:

PEU_K01 - Works as part of a team to perform electrical system testing

	PROGRAM CONTENT				
	Lecture	Number of hours			
Lec1, 2	General characteristics of regulations and standards for the construction of electrical equipment, installations and networks.	4			
Lec3, 4	Generation, transmission, distribution of electric energy. Electric power system and its parameters.	4			
Lec5-9	Protection against electric shock - technical means of protection. Protection against direct and indirect contact in network systems with voltage up to 1kV.	10			
Lec10, 11	Principles of operation and operating instructions for electrical power equipment, installations and networks.1kV	4			
Lec12- 14	Electrical machines and apparatus. Types, principles of construction, types of overload and short circuit protection.	6			
Lec15	Final test	2			
	Total hours:	30			

Laboratory		Number of hours
Lab1	Admission: - Familiarize students with the principles of safety in the laboratory;	1
Lab2	Fault loop impedance measurements. Measurement of protective conductor continuity. Insulation resistance wires. Measurements RCDs. Earth resistance measurements.	7
Lab3	Combining basic circuit low voltage electrical installations (way switches, circuit breakers cross, bistable switches, stair machines, dusk sensors, PIR motion detectors).	7
	Total hours:	15

TEACHING TOOLS USED

- N1. Traditional lecture with the use of multimedia presentations
- N2. Consulting
- N3. Laboratory
- N4. Own work

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT							
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement					
F1	PEU_W01	Final test					
F2	PEU_U01	Evaluation of reports and activity in laboratory classes					
P(W)=F1; P(L)=F2;	P(W)=F1; P(L)=F2;						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] The Electrical Engineering Handbook, Wai-Kai Chen, 2005 Elsevier Inc.
- [2] Electrical installation guide, 2008 Schneider Electric
- $[3]\,$ PN-HD 60364 Instalacje elektryczne niskiego napięcia

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Remigiusz Mydlikowski, remigiusz.mydlikowski@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Światłowody i optokomunikacja

Name of subject in English: Optical Fibers and Optocommunications

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0502

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		15		15
Number of hours of total student workload (CNPS)	50		50		50
Form of crediting	Examina- tion		Crediting with grade		Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points	2		2		2
including number of ECTS points for practical (P) classes			2.0		1.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		0.6		0.6

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. To make wider and deeper the knowladge of physics needed to understand physical phenomena in the optical fiber field
- C2. Understanding of basic knowledge of light propagation in fibers. Familiarization with optical fiber technology, basic types of fibers and their parameters
- C3. Recognision of basic optical fiber telecommunication systems
- C4. The acquisition of skills in experimental works in the fiber optics domain (the start-up of fiber devices such as fiber amplifier, fiber laser, modulation, and detection in fiber systems in representative experiments)
- C5. Acquiring the ability to obtain information from the conference materials written in English, conferences in the optocommunication area (for example ECOC European Conference on Optic Communications)
- C6. Acquiring the ability in preparation presentations in English

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

- PEU_W01 The student has wider and deeper knowledge into physics needed to understand physical phenomena in the fiber optics
- PEU_W02 The student is able to explain basic knowledge of light propagation in fibers. Familiarization with fiber technology, basic types of fibers, and their parameters
- PEU_W03 The student recognizes the basics of optical fiber telecommunication systems. He can explain different telecommunication methods and their parameters

Relating to skills:

- PEU_U01 Students can perform elementary experiments in the field of optical fibers. He can run with such devices fiber amplifiers, fiber lasers, light modulation, and detection. He can apply optical fiber elements in basic experiments.
- PEU_U02 The student is able to find the necessary information from the conference materials written in English in optocommunications or optoelectronics (for example ECOC European Conference on Optic Communications)
- PEU U03 The student is able to prepare and to present the talk on a chosen subject in English

PROGRAM CONTENT		
	Lecture	Number of hours
Lec1	Principles of optical fibers 1	2
Lec2	Principles of optical fibers 2	2
Lec3	Planar fibers	2
Lec4	Optical fibers characteristics	2
Lec5	Special optical fibers	2
Lec6	Photonic crystal fibers (PCF)	2
Lec7	Other passive optical system components	2
Lec8	Introduction to modern optocommunications. Fiber-optic communication systems based on Wavelenth Division Multiplexing technique (WDM, DWDM, CWDM, etc)	2
Lec9	Semiconductor light sources (LED/LD) and transmitters (Tx) for fiber-optic communication	2
Lec10	Semiconductor light detectors (photodiodes) and receivers (Rx)	2

Lec11	Optical amplifiers (OA) and repeaters for fiber-optic communication systems and networks.	2
Lec12	Analysis and design rules of fiber-optic communication links and networks. Power budget. Dispersion management.	2
Lec13	Modern optocommunication systems. ROADMs. Line codes and modulation formats in fiber-opic communication.	2
Lec14	Non-telecom applications of optical fibers 1.	2
Lec15	Non-telecom applications of optical fibers 2	2
	Total hours:	30

Laboratory		
Lab1	Introduction, safety issues in the laboratory, organizing matters	1
Lab2	Basic parameters of optical fibers. Optical fiber connectors	2
Lab3	Basic passive fiber components: couplers, circulators, fiber isolators	2
Lab4	Optical fiber interferometers	2
Lab5	Erbium Doped Fiber Amplifier (EDFA) – parameters and characteristics	2
Lab6	OTDR (Optical Time Domain Reflectometer) measurements	2
Lab7	Fiber splicing	2
Lab8	Compensatory term	2
	Total hours:	15

	Seminar	Number of hours
Sem1	Introductory meeting. Description of subject and rules of the seminar, distribution of seminar subjects.	1
Sem2	The seminar is based on presentation by each student individually twice through the semester about 20 minutes talk based on chosen contribution paper based on famous and prestigious conference ECOC(European Conference on Optical Communication) dealing with subjects: Fibers, fiber devices and amplifiers; Waveguide and optoelectronic devices; Subsystems and Network elements for optical networks; Transmission systems; Backbone and core networks; Access and local area networks	14
	Total hours:	15

TEACHING TOOLS USED

- N1. Classroom (blackboard and chalk)
- N2. Projector, computer with software (for example PowerPoint)
- N3. Laboratory equipped with modern laser-fiber equipment
- N4. Self-study of conference papers written in English
- N5. Preparing and delivering a presentation in English
- N6. Working alone (self-education)
- N7. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_W01- W03	Final exam			
F2	PEU_U02- 03	Ratings for the preparation and presentation of tutorials			
F3	PEU_U01	Grades for preparation and execution of experiments			
P(W)=F1; P(L)=F2; P(S)=F3					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] G.P. Agraval, Fiber-Optics Communication Systems, John Wiles&Sons, third edition, 2002
- [2] E. Desurvire, Erbiu-Doped Fiber Amplifiers, Device and System Developments, Wiley-Interscience, 2002
- [3] Edited by A. Dutta, N. Dutta, M. Fujiwara, WDM Technologies: Passive Optical Componenets, Academic Press, Elsevier Science, 2003
- [4] C.M. DeCusatis, C.J. SherDeCusatis, Fiber Optic Essentials, Academic Press, Elsevier Science, 2006

SECONDARY LITERATURE:

- [1] B.P Keyworth, ROADM Subsystem and Technologies, Proceedings of OFC/NFOEC 2005, 6-11 march, 2005 p.OWB5
- [2] Edited by I.P. Kaminow, T.LKoch, Optical Fiber Telecommunications III A&B, Academic Press, 1997,
- [3] P.J. Winzer, R.J. Essiambre, Advanced Modulation Formats for High-Capacity Optical Transport Networks, Journal of Lightwave Technology, vol.24, pp.4711-4728, 2006

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Paweł Kaczmarek, pawel.kaczmarek@pwr.edu.pl

Faculty of Electronics, Fotonics and Microsystems (W12N) / Department of Cybernetics and Robotics (K29W12ND02)

SUBJECT CARD

Name of subject in Polish: **Komunikacja społeczna** Name of subject in English: **Social Communication**

Main field of study (if applicable): AIR, EKA (AiR, EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W08W12-SM0002S

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					15
Number of hours of total student workload (CNPS)					25
Form of crediting					Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points					2
including number of ECTS points for practical (P) classes					1.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					0.6

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. The student learns about interdisciplinary issues in the field of cultural theory, organisation and management theory and media theory as well as transdisciplinary issues in the humanities and social sciences and engineering with particular reference to the specificity of the field of study
- C2. The student receives an introduction to the main theories of culture including the comparative science of civilizations as a basis for orientation in the contemporary process of globalization with an indication of the main areas of application in the context of the professional practice of engineering
- C3. The student learns about the main theories of organisation and management with an emphasis on the cultural determinants of organisational systems and using a comparative method
- C4. Through the presentation of the main media theories, the student learns about the main areas of application of knowledge from the humanities and social sciences in the work of the professional engineer

SUBJECT LEARNING OUTCOMES

Relating to skills:

PEU_U01 - Can prepare a presentation

PEU_U02 - Students will be able to demonstrate the knowledge required to understand the social, economic, political and legal determinants of engineering activity

PEU_U03 - The student is familiar with the methods of functioning of institutions and mechanisms in the political, legal, economic and social space and their consideration in engineering practice.

PROGRAM CONTENT

	Seminar	Number of hours
Sem1	The human world as a space of communication. A transdisciplinary orientation in the context of civilisation, organisation and media at the interface of the humanities and social sciences and engineering sciences.	3
Sem2	Civilisations as spaces for the development of humanity (humanitas). What is civilisation and how to explain it? Definitions, fields and theories of civilisation.	2
Sem3	Synergy or clash? Consequences of the affirmation of the plurality of civilisations in the context of the comparative science of civilisations.	2
Sem4	The process of organising society and the multiplicity of civilisations: individualism vs. collectivism, limitationism vs technocratism in the context of a comparative analysis of organisational cultures	2
Sem5	Main theories and practice of organisational management	2
Sem6	Media as the main space and an essential element of social communication with typology of the media taking into account civilisational and technological conditions (globalism vs. technological conditions (globalism vs. regionalism of the media)	2
Sem7	Media pedagogy: socio-media competence. Media ethics: whose responsibility for the media?	2
	Total hours:	15

TEACHING TOOLS USED

- N1. Multimedia presentation
- N2. Problem-based discussion
- N3. Own work

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT						
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement				
F1	PEU_U01	Presentation				
F2	PEU_U02- U03	seminar discussion				
P(Sem) = 0.5*F1 + 0.5*F2 (in order to pass the course, both F1 and F2 must be positive)						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] McQuail, Denis, Teoria komunikowania masowego, PWN, Warszawa 2007
- [2] Konersmann, Ralf, Filozofia kultury, Oficyna Naukowa, Warszawa 2009
- [3] Huntington, Samuel P., Zderzenie cywilizacji, Muza SA, Warszawa 2003
- [4] Kaliszewski, Andrzej, Glłówne nurty w kulturze XX i XXI wieku, Poltext, Warszawa 2012
- [5] Hofstede, Geet/ Hofstede, Geet Jan, Kultury i organizacje, Polskie Wydawnictwo Ekonomiczne, Warszawa 2007
- [6] Griffin, Ricky W., Podstawy zarządzania organizacjami, PWN, Warszawa 2004
- [7] Levinson, Paul, Nowe nowe media, WAM, Kraków 2010
- [8] Briggs, Asa/ Burke Peter, Społeczna historia mediów. Od Gutenberga do Internetu, PWN, Warszawa 2010

SECONDARY LITERATURE:

- [1] Koźmiński, A.K., Piotrowski, W., Zarządzanie. Teoria i praktyka, PWN, Warszawa 2000
- [2] Lepa, Adam, Pedagogika mass-mediów, Archidiecezjalne Wydawnictwo Łódzkie, Łodź 2000
- [3] Dusek, Val, Wprowadzenie do filozofii techniki, Wydawnictwo WAM, Kraków 2011
- [4] Stępień Tomasz, Kultura, cywilizacja i historia. Geneza pojęć i teorii na kanwie sporu realizm vs. Antyrealizm, [w:] Sikora, Marek (red.), Realizm wobec wyzwań antyrealizmu. Multidyscyplinarny przegląd stanowisk, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2011

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Tomasz Stępień, tomasz.stepien@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Lasery i zastosowania Name of subject in English: Lasers and Applications Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0506

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		50		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. Understanding of quantum mechanisms governing the laser action. The knowledge of basic laser parameters, their types, and applications.
- C2. Skills in performing experiments in the fields of laser techniques
- C3. Skills in using elementary equipment in laser technique
- C4. The ability of interpretation obtained experimental results

Relating to knowledge:

PEU_W01 - Student understands quantum mechanisms governing laser action. Student knows basic parameters of lasers, their types and applications.

Relating to skills:

PEU_U01 - The student is able to perform experiments in the laser technique area. He is able to use elementary equipment used in laser techniques. He is able to make his own interpretation of obtained results.

	PROGRAM CONTENT				
	Lecture				
LecW1	Elementary properties of electromagnetic radiation. Coherence, polarization	2			
LecW2	Black body radiation. Planck's model. Einstein model. Quantum conditions of amplification of radiation	2			
LecW3	The Fabry-Perot resonator and its spectral properties. Optical resonators and their mode structures. Gaussian beams	2			
LecW4	Gas lasers: atomic, molecular, and ion lasers	2			
LecW5	Semiconductor lasers	2			
LecW6	Solid-state lasers	2			
LecW7	Fiber lasers	2			
LecW8	Pulsed lasers: gain-switching, Q-switching and mode-locking	2			
LecW9	Mode-locked lasers	2			
LecW10	Nonlinear optics and ultrashort pulse propagation	2			
LecW11	Optical frequency combs; stabilization of lasers	2			
LecW12	Mid-infrared lasers	2			
LecW13	Selected applications of lasers	4			
LecW14	Final test	2			
	Total hours:	30			

Laboratory		
LabL1	Introduction, safety issues in the laboratory, organizing matters.	1
LabL2	He-Ne lasers (543nm, 594nm, 628.3nm). Diffraction and interference of lightwaves.	2
LabL3	Transverse modes of laser radiation. Stability of a laser resonator. Analysis of the laser longitudinal modes. Alignment of a laser.	2
LabL4	Semiconductor lasers. Temperature influence on laser characteristics. Spectral properties of semiconductor lasers.	2
LabL5	Coherent detection	2
LabL6	Acoustooptical Bragg modulator. Acoustooptical light diffraction.	2

LabL7	Q-switched fiber laser	2
LabL8	Compensatory term.	2
	Total hours:	15

TEACHING TOOLS USED

- N1. Classroom (blackboard and chalk)
- N2. Projector, computer with software (for example PowerPoint)
- N3. Laboratory equipped into modern laser-fiber equipment
- N4. Self-study of conference papers written in English
- N5. Working alone (selfeducation)
- N6. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT						
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement				
F1	PEU_W01	Final test				
F2	PEU_U01	Grades for preparation and execution of experiments				
P(W)=F1; P(L)=F2						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] J.T. Verdeyen, Laser Electronics, Prentice Hall, Englewood Cliffs, 1995
- [2] O. Svelto, Principles of Lasers, Plenum Press, New York, 1998
- [3] C.C. Davies, Lasers and Electro-Optics, Cambridge University Press, 1996
- [4] P.W. Milonni, J.J.H. Eberly, Lasers, John Wiley & Sons, New York, 1988

SECONDARY LITERATURE:

- [1] A. Yariv, Quantum Electronics, John Wiley & Sons, 1989
- [2] A.A. Siegman, Lasers, University Science Book, Mill Valey, California, 1986
- [3] R. Paschotta, The Encyclopedia of Laser Physics and Technology (rp-photonics.com)

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

 $Paweł\ Kaczmarek,\ pawel.kaczmarek@pwr.edu.pl; Grzegorz\ Soboń,\ grzegorz.sobon@pwr.edu.pl$

SUBJECT CARD

Name of subject in Polish: **Moduly IoT** Name of subject in English: **IoT modules**

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0515

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			15	
Number of hours of total student workload (CNPS)	25			25	
Form of crediting	Crediting with grade			Crediting with grade	
For group of courses mark (X) the final course					
Number of ECTS points	1			1	
including number of ECTS points for practical (P) classes				1.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6			0.6	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. None
- 2. None

SUBJECT OBJECTIVES

- C1. Learning methods of wireless communication between electronic modules
- C2. Gaining design skills of designing electronic module for wireless data exchange

Relating to knowledge:

 $\mathrm{PEU}_{-}\mathrm{W01}$ - have a basic understanding of the methods of wireless data transmission

<code>PEU_W02</code> - have knowledge about wireless data modules using protocols: ZigBee, Bluetooth, <code>WiFi</code>, <code>GSM</code> - <code>GPRS</code> and <code>EDGE</code>

Relating to skills:

 PEU_U01 - can choose the right method for wireless data depending on the application

PEU_U02 - can use practically electronic modules for the construction of the device transmitting / receiving wireless data path

	PROGRAM CONTENT			
	Lecture			
Lec1	Introduction. Basic definitions	2		
Lec2	Wireless data transfer - proprietary solutions	2		
Lec3	IoT modules based on IEEE 802.15.1 - Bluetooth BR and BLE	2		
Lec4	IoT modules based on IEEE 802.15.4 - OpenThread and ZigBee	3		
Lec5	NFC and RFID modules	2		
Lec6	Wireless data transfer in mobile networks - 2G, 3G, LTE	3		
Lec7	Final test	1		
	Total hours:	15		

Project		Number of hours
Pr1	Introduction	2
Pr2	The choice of theme projects	2
Pr3	PCB Design	2
Pr4	Running of designed circuit	2
Pr5	Software design	6
Pr6	Overview of projects	1
	Total hours:	15

TEACHING TOOLS USED

N1. Lecture with blackboard, projector and slides

N2. Project activities

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_U01- 02	Discussions, written reports			
F2	PEU_W01- 02	Written exam			

P(W)=F1; P(P)=F2;

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] The materials available on the subject webpage
- [2] Papers and webpages recommended by the teacher

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Budzyń, grzegorz.budzyn@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Metody uczenia maszynowego Name of subject in English: Machine Learning Methods Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0509

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		15		15
Number of hours of total student workload (CNPS)	25		30		25
Form of crediting	Crediting with grade		Crediting with grade		Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points	1		1		1
including number of ECTS points for practical (P) classes			1.0		1.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6		0.6		0.6

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

C1. Be familiar with unsupervised learning methods

C2. Be familiar with supervised learning methods

Relating to knowledge:

PEU_W01 - lists and explains fundamental methods for dimensionality reduction and feature extraction

PEU_W02 - lists and explains fundamental blind source separation methods for statistically independent signals

 $\ensuremath{\mathrm{PEU}}\xspace_{\mathrm{W03}}$ - lists and explains fundamental statistical classifiers

PEU_W04 - ists and explains fundamental clustering methods

Relating to skills:

PEU_U01 - be able to reduce the dimensionality and extract features from analyzed data

PEU U02 - be able to use selected blind source separation methods

<code>PEU_U03</code> - be able to select the right classifier to a given problem

PEU_U04 - be able to find hidden structure in analyzed data

Relating to social competences:

PEU_K01 - Prepares a presentation on a given topic from the scope of the course

 PEU_K02 - Presents the prepared topic and takes an active part in the discussion, also taking the role of a moderator

	PROGRAM CONTENT			
	Lecture			
LecW1	Dimensionality reduction methods: PCA	3		
LecW2	Dimensionality reduction methods: NMF	3		
LecW3	Multilinear dimensionality reduction methods	3		
LecW4	Blind source separation methods for statistically independent signals	2		
LecW5	Statistical classifiers	2		
LecW6	Clustering methods	1		
LecW7	Test	1		
	Total hours:	15		

	Laboratory	Number of hours
LabL1	The general rules of working with "Statistical and Machine Learning Toolbox" in Matlab. Examples	1
LabL2	Implementation and tests of PCA method	3
LabL3	Implementation and tests of NMF method	2
LabL4	Implementation, tests, and analysis of advanced classifiers	2
LabL5	Implementation and tests of selected clustering methods	2
LabL6	Implementation and tests of selected tensor decomposition methods	2
LabL7	Implementation and tests of selected methods for blind source separation of statistically independent signals	3
	Total hours:	15

	Seminar	Number of hours
SemS1	Assignment of seminar topics to students	1
SemS2	Unsupervised machine learning methods	7
SemS3	Supervised machine learning methods	7
	Total hours:	15

TEACHING TOOLS USED

- N1. Lecture notes and slides
- N2. Computational works and discussions
- N3. Programming works coding of numerical algorithms in Matlab
- N4. Consultation hours
- N5. Homework preparation to laboratory work
- N6. Homework self-studying and preparation to examination

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_W01- 04	Written exam			
F2	PEU_U01- 04	Preparation to labs, written reports, activity during tasks execution			
F3	PEU_K02- 02	Assessment of preparation for the seminar, activity and the ability to conduct substantive discussion in various roles.			
P(W)=F1; P(L)=F2; P(S)=F3					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Ch. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- [2] J. Hopcroft, R. Kannan, Foundations of Data Science, E-book, 2014, http://www.ime.usp.br/yoshi/TMP/Hopcroft-Kannan.pdf
- [3] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012
- [4] E. Alpaydin, Introduction to Machine Learning, The MIT Press, Cambridge, Massachusetts, 2010
- [5] A. Cichocki, R. Zdunek, A. H. Phan, S.-I. Amari, Nonnegative Matrix and Tensor Factorization: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley and Sons, UK, 2009

SECONDARY LITERATURE:

[1] Latest paper from IEEE Press devoted to machine learning methods

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Rafał Zdunek, rafal.zdunek@pwr.edu.pl

Faculty of Fundamental Problems of Technology (W11) / K64W11D11 (K64W11D11)

SUBJECT CARD

Name of subject in Polish: Metody numeryczne w równaniach różniczkowych Name of subject in English: Numerical methods in differential equations

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **obligatory**

Subject code: W13EKA-SM1642

Group of courses: No

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		80		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes			3.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student has basic knowledge and abilities on mathematical analysis.
- 2. Student has basic knowledge concerning programming environments: Matlab/Mathematica/Mapple.

SUBJECT OBJECTIVES

- C1. Study of basic notions and knowledge in the area of numerical methods applied in differential equations
- C2. Study of basic numerical techniques used in discretization of differential equations.
- C3. Acquisition of basis abilities in construing and analyzing difference schemes for differential equations

Relating to knowledge:

PEU_W01 - student knows the most important numerical techniques used in solving problems for differential equations

 $\mathrm{PEU}_\mathrm{W02}$ - student knows bases of construing own numerical schemes

Relating to skills:

PEU_U01 - student is able to analyze basic problems in differential equations with respect to application of suitable approximate methods

PEU_U02 - student is able to construct mathematical models used in concrete applications of mathematics, based on differential equations and their discrete forms

Relating to social competences:

 PEU_K01 - student can, based on the concepts learned, find the necessary information in the literature

PROGRAM CONTENT			
	Lecture	Number of hours	
Lec1	Recalling basic facts of theory of ordinary differential equations.	2	
Lec2	Explicit and implicit Euler method of approximate solving of ordinary differential equations and their systems.	2	
Lec3	Runge-Kutta type methods and other schemes of approximation of ordinary differential equations and their systems	2	
Lec4	Multi-step methods, stability of numerical methods. Stiff problems	2	
Lec5	Methods of approximation of boundary value problems for second order ordinary differential equations: shooting methods and difference methods	2	
Lec6	Methods of approximation of boundary value problems for second order ordinary differentia equations: Ritz-Galerkin method	2	
Lec7	Difference methods for first order partial differential equations. CFL condition	2	
Lec8	Recalling basic facts of theory of second order partial differential equations	2	
Lec9	Difference approximation of elliptic boundary value problems on the plane	2	
Lec10	Variational formulation of boundary value problems for elliptic type equations	2	
Lec11	Ritz-Galerkin and finite element methods for elliptic problems	2	
Lec12	Difference methods for parabolic problems. Explicit and implicit schemes for heat conduction equation	2	
Lec13	Stability of approximate method. Cranck-Nicholson scheme for equations of parabolic type	2	
Lec14	Difference methods for the vibrating string problem and other hyperbolic problems	3	
Lec15	Summary	1	
	Total hours:	30	

	Laboratory	Number of hours
Lab1	Computer construction of solution of ordinary differential equations	4
Lab2	Practical verifying of efficacy of automatic exactness control.	2
Lab3	Visualization and comparison of usefulness of various methods.	4

Lab4	Algorithms for numerical methods of solution of one-dimensional boundary value problems for elliptic equations	4
Lab5	Discretization of hyperbolic first order problems. Conditions of stability and convergence of approximate methods.	4
Lab6	Discretization of two-dimensional boundary value problem for elliptic equations.	4
Lab7	Difference schemes of approximation of one-dimensional parabolic equation.	4
Lab8	Difference method of discretization of the vibrating string equation.	4
	Total hours:	30

TEACHING TOOLS USED

- N1. Lecture in a traditional form and/or onlinne with usage of multimedia tools
- N2. Computing laboratory problems solved on the Matlab and/or Python platforms
- N3. Computing laboratory materials placed on the website

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01 PEU_W02	Presentation of given problem		
F2	PEU_U01 PEU_U02	Oral presentation, quizes, final test		
P(W)=F1; P(L)=F2				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Richard L. Burden, J. Douglas Faires, Numerical Analysis.
- [2] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer Berlin Heidelberg 2007
- [3] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons 2003
- [4] K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations. An Introduction, Cambridge University Press 2005

SECONDARY LITERATURE:

- [1] L. Lapidus, G. F. Pinder, Numerical solution of partial differential equations in science and engineering, John Wiley & Sons, 1998
- [2] R. M. Mattheij, S. W. Rienstra, J.H.M. ten Thije Boonkkamp, Partial differential equations. Modeling, analysis and computations.
- [3] Stig Larsson, Vidar Thomee, Partial differential equations with numerical methods.
- [4] R. J. Le Vegue, Numerical Methods for conservation laws, Birkhauser, Basel 1990
- [5] J. W. Thomas, Numerical partial differential equations: conservation laws and elliptic equations, Springer, New York 1999

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Wojciech Mydlarczyk, wojciech.mydlarczyk@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Nowe trendy w Elektronice i Fotonice

Name of subject in English: New Approaches to Electronics and Photonics

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **obligatory**

Subject code: W12EKA-SM0511

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30				
Number of hours of total student workload (CNPS)	30				
Form of crediting	Crediting with grade				
For group of courses mark (X) the final course					
Number of ECTS points	1				
including number of ECTS points for practical (P) classes					
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.0				

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

C1. Gain current knowledge of development trends and the most relevant new developments in the area of the studied scientific discipline including advanced electronic circuits and photonics.

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

PEU_W01 - He/she has up-to-date knowledge of the development trends and the most significant new developments in the area of the studied scientific discipline including advanced electronic circuits and photonics.

Relating to skills:

PROGRAM CONTENT		
Lecture		
Lec1- 15	The lecture presents the current development of the scientific discipline with the main focus on electronics and photonics. The formula of conducting classes assumes the presentation of the most current content by experts carrying out scientific research (in particular, persons returning from scientific internships in domestic and foreign centers). Therefore, the list of lectures is modified from year to year. An example set of lectures conducted as part of the course in 2021: 1. Optical spectroscopy - fundametals (2h) (dr M. Nikodem) 2-3. Trace gas detection with laser spectroscopy (4h) (dr M. Nikodem) 4. New techniques in optical spectroscopy (2h) (dr M. Nikodem) 5. Optical frequency combs (2h) (dr M. Nikodem) 6. Optical clocks (2h) (dr M. Nikodem) 7. Bimsuth-doped fiber amplifiers (2h) (dr M. Nikodem) 8. Blue laser diodes (2h) (dr M. Nikodem) 9. Passive fiber components fabrication technologies and their application in the all-fiber construction of fiber lasers and amplifiers (dr D. Stachowiak) 10. Spectroscopy using chip-scale optical frequency combs (dr Ł. Sterczewski) 11. Laser processing of materials using ns, ps and fs laser pulses (dr P. Kozioł) 12-13. Ultrafast fiber lasers for biophotonics: from imaging single cells to human eye (dr J. Boguslawski)	30
	Total hours:	30

TEACHING TOOLS USED

- N1. Classroom (chalk and whiteboard)
- N2. Projector, computer with presentation software (e.g. PowerPoint)
- N3. Teleconference, in case of a lecture from abroad or another national center
- N4. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01, PEU_U01	Student's attendance during lectures and activity in discussions		
P=F1				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Materiały dostarczone przez wykładowcę / Materials provided by the lecturer

SECONDARY LITERATURE:

[1] Proponowana literatura przez wykładowcę / Suggested literature by the lecturer

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jarosław Sotor, jaroslaw.sotor@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Optyka i optyka nieliniowa Name of subject in English: Optics and Nonlinear Optics Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: facultative

Subject code: W12EKA-SM0517

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15	15			
Number of hours of total student workload (CNPS)	25	25			
Form of crediting	Crediting with grade	Crediting with grade			
For group of courses mark (X) the final course					
Number of ECTS points	1	1			
including number of ECTS points for practical (P) classes		1.0			
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6	0.6			

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. Poznanie podstawowych zagadnienia z optyki geometrycznej i falowej, podstawowych zjawisk optyki nieliniowej, dotyczących światłowodów oraz klasyfikuje elementy optyczne
- C2. Poznanie elementarnych obliczeń z optyki klasycznej
- C3. Zdobycie umiejętności przeprowadzania podstawowych obliczenia dla zjawisk optycznych typu: odbicie i transmisja światła, polaryzacja światła, dwójłomność, interferometria, dyfrakcja i optyka fourierowska.

Relating to knowledge:

PEU_W01 - Rozróżnia podstawowe zagadnienia z optyki geometrycznej i falowej; wymienia i interpretuje podstawowe zjawiska optyki nieliniowej, zwłaszcza dotyczące światłowodów; klasyfikuje elementy optyczne

PEU_W02 - Wyjaśnia sposoby elementarnych obliczeń z optyki klasycznej

Relating to skills:

PEU_U01 - Przeprowadza obliczenia w podstawowych zjawiskach optycznych typu: odbicie i transmisja światła, polaryzacja światła, dwójłomność, interferometria, dyfrakcja i optyka fourierowska

	PROGRAM CONTENT		
	Lecture		
Lec1	Introduction to linear and nonlinear optics	2	
Lec2	Nonlinear polarization, nonlinear susceptibility, wave equation for nonlinear media	2	
Lec3	Second-order nonlinear processes	2	
Lec4	Third-order nonlinear processes	2	
Lec5	Construction and practical implementation of nonlinear optical setups	2	
Lec6	Nonlinear effects in optical fibers	2	
Lec7	Propagation of ultrashort pulses in optical fibers - selected practical aspects	2	
Lec8	Test	1	
	Total hours:	15	

	Exercise	
Ex1-7	Ćwiczenia obejmują obliczenia rachunkowe prowadzone w formie rozwiązywania zadań i omówień. Światło jako fala, koherencja, polaryzacja, optyka geometryczna, soczewki, interferencja, dyfrakcja Fresnela I Fraunhoffera, optyka Fourierowska, tworzenie obrazu, optyczna funkcja transmitancji. Obliczenia konstrukcji układów optycznych liniowych i nieliniowych	15
	Total hours:	15

TEACHING TOOLS USED

- N1. Wykład tradycyjny i/lub online z wykorzystaniem narzędzi multimedialnych
- N2. Komputer z oprogramowaniem MATLAB lub/i LabView.
- N3. Projektor, komputer z oprogramowaniem do prezentacji (np. PowerPoint)
- N4. Ćwiczenia rachunkowe
- N5. Konsultacje
- N6. Praca samodzielna

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01, PEU_W02	Test		
F2	PEU_U01	Assessment of tasks to be solved		
P(W)=F1; P(C)=F2				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] K.K. Sharma, Optics. Principles and applications., Academic Press, Amsterdam, 2006
- [2] Peter E. Powers, Joseph W. Haus, Fundamentals of Nonlinear Optics, Second Edition, CRC Press Taylor & Francis Group, 2017

SECONDARY LITERATURE:

- [1] G. P. Agrawal, Nonlinear fiber optics, Academic Press, San Diego, 2019
- [2] G. P. Agrawal, Applications of Nonlinear Fiber Optics, Academic Press, 2020

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Soboń, grzegorz.sobon@pwr.edu.pl

Faculty of Electronics, Fotonics and Microsystems (W12N) / ()

SUBJECT CARD

Name of subject in Polish: **Przedsiębiorczość** Name of subject in English: **Entrepreneurship**

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **obligatory**

Subject code: W08EKA-SM0020

Group of courses: No

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15				15
Number of hours of total student workload (CNPS)	25				50
Form of crediting	Crediting with grade				Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points	1				2
including number of ECTS points for practical (P) classes					1.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6				0.6

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. student has basic knowledge, skills and competencies in the management of a modern organization

SUBJECT OBJECTIVES

- C1. Expanding knowledge in the field of entrepreneurship (innovative, MSME, social, corporate, intellectual, regional, academic, senior) and organizational innovation
- C2. Getting to know the instruments (concepts, strategies, models, methods) supporting the development of organizational entrepreneurship and innovation

Relating to knowledge:

 $\mathrm{PEU}_{-}\mathrm{W01}$ - student knows the essence and types of entrepreneurship and types of innovation

PEU_W02 - student knows the instruments (concepts, strategies, models, methods) for the development of entrepreneurship and innovation

PEU_W03 - student knows and understands the principles of creating and protecting intellectual resources in an organization

Relating to skills:

PEU_U01 - student is able to search, select sources of information and interpret knowledge related to entrepreneurship and innovation

Relating to social competences:

PEU_K01 - student will acquire an active entrepreneurial attitude to implement innovative projects and the ability to think creatively in the conditions of sustainable development and contemporary changes and civilization dilemmas

	PROGRAM CONTENT		
	Lecture		
Lec1	Organizational classes, Introduction to entrepreneurship and innovation	1	
Lec2	Entrepreneurial organization and its types	2	
Lec3	Entrepreneurship as a feature of employees - research and development	2	
Lec4	Entrepreneurial resources in the organization - identification and development	2	
Lec5	Entrepreneurial processes in the organization - identification and development	2	
Lec6	Building entrepreneurial organizations	2	
Lec7	Barriers to the development of entrepreneurship in an organization	2	
Lec8	Presentation by students of semester papers on contemporary issues in the area of innovation and organizational entrepreneurship	2	
	Total hours:	15	

Seminar		Number of hours
Sem1	Introduction to the seminar - students' choice of the surveyed entrepreneurship	1
Sem2	The essence and system of the researched entrepreneurship (innovative, MMSE, social, corporate, intellectual, regional, academic, senior) - choice of the issue by students	2
Sem3	Concepts, models, strategies of the studied entrepreneurship	2
Sem4	Development of the studied entrepreneurship - process approach	2
Sem5	Conditions and limitations of the development of the studied entrepreneurship	2
Sem6	Measurement of the studied entrepreneurship Presentation of the final presentation and passing the seminar	2
Sem7	A case study on the studied entrepreneurship	2
Sem8	Presentation of the final presentation and passing the seminar	2
	Total hours:	15

TEACHING TOOLS USED

- N1. Case studies
- N2. Multimedia performance
- N3. Selected statistical data and reports

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT			
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement	
F1	PEU_W01, PEU_W02, PEU_W03, PEU_U01	Evaluation of the semester's written work	
F2	PEU_K01	Evaluation of creative thinking through participation in seminar discussions	
P(W) = F1, P(S) = F2			

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] J. TIDD, J. BESSANT, ZARZĄDZANIE INNOWACJAMI. INTEGRACJA ZMIAN TECHNOLOGICZNYCH, RYNKOWYCH I ORGANIZACYJNYCH, OFICYNA A WOLTERS KLUWER BUSINESS, WARSZAWA 2011
- [2] A. DEREŃ, J.SKONIECZNY, ZARZĄDZANIE TWÓRCZOŚCIĄ ORGANIZACYJNĄ, WYD. DIFIN WARSZAWA 2016
- [3] J. SKONIECXZNY, TWÓRCZOŚĆ JAKO FUNDAMENT STRATEGII ORGANIZACJI, OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ, WROCŁAW 2019

SECONDARY LITERATURE:

- [1] E. Catmull, KREATYWNOŚĆ SA, MT Biznes, Warszawa 2014
- [2] P. Thiel, ZERO TO ONE. NOTATKI O START-UPACH, CZYLI JAK BUDOWAĆ PRZYSZŁOŚĆ MT Biznes, Warszawa 2015
- [3] W. Isaacson, STEVE JOBS, Wydawnictwo Insignis, 2011
- [4] L. Kahney, JONY IVE. GENIUSZ, KTÓRY ZAPROJEKTOWAŁ NAJSŁYNNIEJSZE PRODUKTY APPLE, Insignis, 2014
- [5] W. Isaacson, INNOWATORZY, Wyd. Insignis 2014
- [6] Ph. Knight, SZTUKA ZWYCIESTWA, Rebis, Poznań 2017

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jan Skonieczny, jan.skonieczny@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: **Praca dyplomowa** Name of subject in English: **Master Thesis**

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0513

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)				105	
Number of hours of total student workload (CNPS)				450	
Form of crediting				Crediting with grade	
For group of courses mark (X) the final course					
Number of ECTS points				16	
including number of ECTS points for practical (P) classes				16.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)				4.2	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. Demontrat the knowladge and skills ackuired during studies
- C2. Preparation for the final exam.
- C3. Development of creative thinking and taking action. Acquisition of competence appriopriate to determine the priorities for the implementation of selected task.

Relating to skills:

PEU_U01 - Student prepares a master's thesis containing research aspects. The prepared disertation should proof hat stunent: - can obtain information from literature, databases and other sources, integrates it, interprets and critically evaluates it, - can plan and conducts experiments, including measurements and computer simulations, - can interpret the obtained results and draws conclusions, - uses analytical, simulation and experimental methods to formulate and solve problems, - formulates and tests hypotheses related to research problems, - integrates knowledge from various fields and disciplines and applies a systemic approach, also taking into account non-technical aspects, - assesses the usefulness and the possibility of using new achievements (techniques and technologies) in the represented discipline, - proposes improvements / rationalization of existing technical solutions, - interprets the obtained research results, draws appropriate conclusions and formulates recommendations, - can edits the master's thesis in accordance with formal requirements.

PROGRAM CONTENT

TEACHING TOOLS USED

N1. selfstudys

N2. laboratory work

N3. consultation

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_U01	Supervisor assessment			
F2	PEU_U01	Reviewer's rating			
P = (F1 + F2) / 2 if F1 and F2 differ significantly, one more reviewer may be appointed.					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

[1] Dobierana przez studenta indywidualnie do tematu pracy. Selected by the student individually to the topic.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jarosław Sotor, jaroslaw.sotor@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: **Programowanie mikrokontrolerów** Name of subject in English: **Microcontrollers Programming**

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0503

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30	30	
Number of hours of total student workload (CNPS)	50		50	50	
Form of crediting	Examina- tion		Crediting with grade	Crediting with grade	
For group of courses mark (X) the final course					
Number of ECTS points	2		2	2	
including number of ECTS points for practical (P) classes			2.0	2.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		1.2	1.4	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- C1. Acquisition of knowledge of modern microcontrollers, 8 -, 16 and 32-bit systems
- C2. Knowledge of architectures of basic families of microcontrollers
- C3. Knowledge of architectures of advanced families of microcontrollers
- C4. Acquisition of basic knowledge of microcontroller applications

Relating to knowledge:

 $\ensuremath{\mathrm{PEU}}\xspace_{\ensuremath{\mathrm{W}}01}$ - has a basic knowledge of modern microcontrollers

 $\mathrm{PEU}_{-}\mathrm{W02}$ - has knowledge of a variety of architectures and applications of microcontrollers

 $\mathrm{PEU}_\mathrm{W03}$ - knows the methods and tools for programming microcontrollers

PEU_W04 - is able to choose the right type of microcontroller, depending on the application

Relating to skills:

PEU_U01 - can set up your development environment to work

 PEU_U02 - can design a printed circuit board using a microcontroller

 $\ensuremath{\mathsf{PEU}}\xspace_{\ensuremath{\mathsf{U}}\xspace} 03$ - can take advantage of the functional blocks microcontrollers

 $\mathrm{PEU}_\mathrm{U04}$ - working in a group is able to direct the work of the team

	PROGRAM CONTENT				
	Lecture				
Lec1	Introduction. Basic definitions	2			
Lec2, 3	Microprocessor – building blocks, memory map, addressing modes. Main programming techniques. Low level programming languages vs high level programming languages	4			
Lec4, 5	8-bit microcontrollers: PIC Micro, AVR and 8051 based families	4			
Lec5, 6	Programming serial and parallel interfaces: SCI, SPI, I2C, USB, CAN, Ethernet	4			
Lec7	Low power software and hardware	2			
Lec8	Midsemester test	2			
Lec9, 10, 11	32-bit Microcontrollers: ARM family. Cortex-M, Cortex-R, Cortex-A	6			
Lec12, 13	Advanced peripherals (ADC, DAC, DMA, IPCC, HASH, etc.)	4			
Lec14	Digital Signal Controllers	2			
Lec15	Multiple core processing in SIMD and MIMD configurations	2			
_	Total hours:	32			

Laboratory		Number of hours
Lab1	Introduction	1
Lab2	Familiarization with the KeilARM environment and the STM32 processor	2
Lab3	Getting to know the STM32IDECUBE environment and evaluation boards with the STM32 processor	3
Lab4- 15	Configuring CPU Peripherals: 1. System Clock, 2. UARTs, 3. SPI, 4.ADC, 5.DMA, 6. TIMER, 7. RTOS, 8. Use of CRC	24
	Total hours:	30

	Project	Number of hours
Pr4	Discussion projects topics	2
Pr5 - 8	Work on the design and manufacture of printed circuit boards	12
Pr9 - 14	Programming and implementation of the program	14
Pr15	Examination	2
	Total hours:	30

- N1. Discussions, written reports
- N2. Own work independent study
- N3. Written exam

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_U01- U04	Discussions, written reports, cooperation in a group			
F2	PEU_W01- 04	Written exam			
P(W)=F1; P(P)=F2;					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Furber S., "ARM System On-Chip Architecture", Pearsons Educated Limited, 2000
- [2] Franklin M., "Network Processor Design: Issues and Practices", Elsevier, 2003
- [3] Yui J., "The Definitive Guide to the ARM Cortex-M3", Newnes, 2007

SECONDARY LITERATURE:

- [1] "Architecture and Programming of PSoC Microcontrollers", http://www.easypsoc.com/book/
- [2] Lane J., "DSP Filter Cookbook", Prompt, 2008
- [3] Webpages: www.atmel.com, www.ti.com, www.arm.com, www.analog.com

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Budzyń, grzegorz.budzyn@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: **Programowanie sprzętowe** Name of subject in English: **Hardware Programming** Main field of study (if applicable): **Electronics (EKA)** Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0507

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		80		
Form of crediting	Examina- tion		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes			3.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.3		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. None

- C1. Acquisition of knowledge of modern structures of programmable devices
- C2. Gaining basic knowledge of the main structures, parameters and applications
- C3. Acquisition of knowledge of the basics of the VHDL language

Relating to knowledge:

 $\ensuremath{\mathrm{PEU}}\xspace_{-}\ensuremath{\mathrm{W}01}$ - have a basic understanding of the various programmable structures

PEU_W02 - have knowledge of the functional units occurring in FPGA and ASIC

PEU_W03 - knows the basics of hardware description languages

 PEU_W04 - being able to choose the right type of microcontroller, depending on the application

Relating to skills:

PEU_U01 - can implement the systems, programmable logic core logic

PEU_U02 - can set up your development environment to work

 $\ensuremath{\mathsf{PEU}}\xspace_{\ensuremath{\mathsf{U}}003}$ - can take advantage of the functional blocks of the FPGA

 PEU_U04 - working in a group is able to direct the work of the team

	PROGRAM CONTENT			
	Lecture	Number of hours		
Lec1	Introduction. Overview of the basic structures of PLD, PLA, and CPLD	2		
Lec2, 3	Overview of FPGA and ASIC structures	4		
Lec4 - 6	Programming in VHDL language	6		
Lec7	Combinational & sequential circuits in HDL	2		
Lec8	Midterm test	2		
Lec9	HDL programming environments	2		
Lec10	Advanced issues in VHDL - attributes and constraints	2		
Lec11	Advanced issues in VHDL - Clocking	2		
Lec12	Advanced issues in VHDL - IP Cores	2		
Lec13	Alternate HDLs - Verilog, SystemVerilog, System C	2		
Lec14	Math algorithms in HDLs	2		
Lec15	Software and hardware CPUs in FPGAs	2		
	Total hours:	30		

Laboratory		Number of hours
Lab1	Introduction	2
Lab2	Getting familiar with the environment Xilinx ISE	4
Lab3	The implementation of simple logic structures	6
Lab4	User interface and communication with PC	8
Lab5	Use of functional blocks	4
Lab6	Implementation of microcontroller cores in the logic structures	4
Lab7	Summary	4
	Total hours:	32

- N1. Lecture with blackboard, projector and slides
- N2. Laboratory, solving engineering problems using a computer
- N3. Own work, preparation for laboratory exercises

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_U01- 04	Discussions, written reports, cooperation in a group			
F2	PEU_W01- 04	Written exam			
P(W)=F1; P(L)=F2;					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Lin, Ming-Bo, "Digital system designs and practices : using Verilog HDL and FPGAs", John Wiley & Sons (Asia), 2008
- [2] Woods R., "FPGA based implementation of signal processing systems", John Wiley and Sons, Ltd., 2008

SECONDARY LITERATURE:

- [1] Frey B., "PowerPC Architecture Book, v. 2.02", http://www.ibm.com/developerworks/power/library/pa-archguidev2/
- [2] Pong Chu, "FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version", John Wiley and Sons, Ltd., 2008
- [3] Kilts S., "Advanced FPGA Design", John Wiley and Sons, Ltd., 2007
- [4] Webpages: www.xilinx.com, www.altera.com, www.atmel.com

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Budzyń, grzegorz.budzyn@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Programowanie w środowisku LabVIEW

Name of subject in English: LabVIEW programming Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0523

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15			30	
Number of hours of total student workload (CNPS)	30			80	
Form of crediting	Crediting with grade			Crediting with grade	
For group of courses mark (X) the final course					
Number of ECTS points	1			3	
including number of ECTS points for practical (P) classes				3.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6			1.4	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic programming.
- $2. \,$ Basic knowledge of analod-digital converters.
- 3. Basic electronic skills.
- 4. Basic multi-threading programming.

SUBJECT OBJECTIVES

- C1. Knowledge gain from the scope of graphical programming.
- C2. Skills gain in development of software used in data aquisition, processing and presentation.
- C3. Skills gain in design of intuitive and interactive graphical user interfaces.
- C4. Skills gain in documentation, code compilation and sharing; generation of executable files and installation packages.
- C5. Skills gain in multi-0threading programming in LabVIEW environment.

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

PEU_W01 - As a result of conducted classes student shall: list the rules of good practices applied in LabVIEW programming, describe data structurese and methods of communication with external devices and list basic project templates for data acquisition.

Relating to skills:

PEU_U01 - As a result of conducted classes student shall have ability to: use libraries available for LabVIEW environment to create data acquisition, processing and presenting applications; use available tools to track data flow, errors and messages; create and develop subprograms; prepare code and functional documentation; generate executable files and installation packages.

	PROGRAM CONTENT			
	Lecture	Number of hours		
Lec1	Introduction to graphical programming. Characterization of LabVIEW environment - front panel, block diagram, data flow.	2		
Lec2	Project organization in LabVIEW environment - significance of style and readability of code. Configuration for proper project management.	2		
Lec3	Application architectures - types, applications, design rules, how to develop and share code. Round-Robin, State Machine, Producer-Consumer, Queues.	2		
Lec4	Error handling architectures - methods of capturing, processing, displaying, logging and reacting to errors.	2		
Lec5	Data processing methods - capturing, processing, analyzing, displaying and logging data. Differences in handling data and errors.	2		
Lec6	Code compilation - generation of executable file and installation packages. Maintaining source code control with compilation in LabVIEW.	2		
Lec7	Application documentation, tools and ways to describe code to users and developers. Strategies of team code development.	2		
Lec8	Test.	1		
	Total hours:	15		

	Project	Number of hours
Pr1	Practical introduction to LabVIEW environment - front panel, block diagram, connector pane, icon and data flow.	2
Pr2	Continuation on analysis of data-flow - nodes, feedback, concurrent processing. Local and global variables vs data-flow control. Functional Global Variables.	2
Pr3	Code readability, project organization to promote coherent, readable, expandable and easy to maintain code.	2
Pr4	Programatic control over user interface - how to create adjustable program to fluctuating user needs.	2
Pr5,6	Single-threaded application architectures - analysis of features and applications of various data acquisition architectures.	4
Pr7,8	Multithreaded application architectures - analysis of features and applications of various data acquisition architectures.	4
Pr9	Data and error transmission in multithreading. Handling of data depending on its size and type.	2
Pr10	Connecting system to data acquisition card using MAX program, simulation of data acquisition card.	2
Pr11	Logging, displaying and processing data from acquisition cards.	2
Pr12- 14	Individual project - development of data acquiring application with chosen system and architecture. Generation of executable files and installation packages.	6
Pr15	Project presentation.	2
	Total hours:	30

- N1. Traditional lecture and/or online lecture with usage of multlimedia tools.
- N2. Project classes.
- N3. Homework, preparation for project tasks and for final exam.
- N4. Project, measurement taking and documenting.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT					
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement			
F1	PEU_W01	Final test.			
F2	PEU_U01	Evaluation of project and progress during task execution.			
C(W) = F1; C(L)=F2					

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Peter A. Blume : The LabVIEW style book (Upper Saddle River, NJ: Prentice Hall, 2007).
- $[2]\ \ Robert\ H.$ Bishop : LabVIEW 8 student edition, Upper Saddle River : Pearson Prentice Hall, 2007.

SECONDARY LITERATURE:

- [1] Richard Jennings, Fabiola De la Cueva : LabVIEW graphical programming, Fifth edition (New York: McGraw Hill, 2020).
- [2] John Essick, Hands-on introduction to LabVIEW for scientists and engineers (New York: Oxford University Press, 2009).

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Mikołaj Krakowski, mikolaj.krakowski@pwr.edu.pl;Adam Wąż, adam.waz@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Projektowanie układów RF

Name of subject in English: RF Circuits Design Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0510

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	15		30	15	
Number of hours of total student workload (CNPS)	50		55	25	
Form of crediting	Crediting with grade		Crediting with grade	Crediting with grade	
For group of courses mark (X) the final course					
Number of ECTS points	2		2	1	
including number of ECTS points for practical (P) classes			2.0	2.0	
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	0.6		1.2	0.7	

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of physics, necessary to understand the physical phenomena in the field of telecommunications.
- 2. Basic knowledge in selected branches of mathematics necessary to understand the issues described with differential equations and complex numbers

SUBJECT OBJECTIVES

- C1. Familiarize students with the use of microwave technology in electronics, telecommunications, industry, medicine, navigation, transportation and research in the field of solid state physics and astronomy.
- C2. Acquirement of knowledge including the basic circuit and field parameters describing microwave systems (VSWR, reflection coefficient, return loss, Scattering Matrix) as well as impedance matching and power transmission issues in high frequency circuits.
- C3. Acquirement of knowledge including basic passive and active high frequency systems manufactured in: microstrip, stripline, LTCC and MMIC technology.

SUBJECT LEARNING OUTCOMES

Relating to knowledge:

- $PEU_W01 FIXME: knowledge of microwave technology applications in electronics, \\telecommunications, industry, medicine, navigation, transportation$
- PEU_W02 FIXME: Knowledge of the basic circuit and field parameters describing high frequecy circuits and systems.
- PEU_W03 FIXME: Knowledge of the construction and parameters of basic passive and active high frequency circuits and systems manufactured in: microstrip, stripline, LTCC and MMIC technology.
- PEU_W04 FIXME: Knowledge of design methods in mictrostrip technology and knowledge of CAE software for high frequency circuit analysis and design
- PEU_W05 FIXME: Knowledge of high frequency measurements equipement, methods and techniques

Relating to skills:

- PEU_U01 FIXME: Skill in using of basic concepts and fundamental field and circuits parameters describing transmission lines and high frequency circuits and systems
- PEU_U02 FIXME: Skill in using CAE software for high frequency circuit analysis and design.
- PEU_U03 FIXME: Ability to design of basic high frequency circuits with the aid of CAE software using appropriately selected electronic components and MMIC chips.
- PEU_U04 FIXME: Ability to prepare and perform basic measurements utilizing methods and equipment used in high frequency technique

	PROGRAM CONTENT			
	Lecture			
Lec1	FIXME: Introduction. Organizational matters. Usage of microwave technology in electronics, telecommunications, industry, medicine, navigation, transportation and research in the field of solid state physics and astronomy.	1		
Lec2-3	FIXME: Basic circuit and field parameters of transmission lines and RF circuits. Scattering Matrix. Impedance matching and power transmission issues in high frequency circuits.	4		
Lec4	FIXME:Waveguide and microstrip planar lines technology - propagation, technology and construction issues.	2		
Lec5	FIXME: Basic passive and active high frequency circuits manufactured in: Microstrip, Stripline, LTCC and MMIC technology.	2		
Lec6	FIXME: Design methods of high frequency circuits in mictrostrip technology with the aid of CAE software (power dividers/combiners, couplers, filters and amplifiers)	2		
Lec7	FIXME: High frequency measurements equipement, methods and techniques	2		

Lec8	FIXME: Repetitory	2
	Total hours:	15

Laboratory		
Lab1	FIXME: Introduction. Presentation of HF elements, components and systems. Presentation of equipment and measurement methods used in HF technique	2
Lab2-8	FIXME: Measurement of passive and active HF components and circuits with a vector network analyzer, scalar network analyzer and spectrum analyzer. Slotted line measurements using HF signal sources, multimeters and HF detectors and amplifiers.	28
	Total hours:	30

Project		
Pr1	FIXME: Introduction. Presentation and discussion of project themes. Division into design groups. Selection and assignment of design tasks to groups.	1
Pr2-6	FIXME: Preparation of the project involving the concept of a circuit, calculations, computer simulations and a printed circuit board design. Report writing.	12
Pr7-8	FIXME: Presentation and evaluation of completed projects.	2
	Total hours:	15

N1. FIXME: Multimedia presentation

N2. FIXME: Exercises with simulation tools and CAE software

N3. FIXME: Lab, performing and documenting measurements. Personal presentation of equipment

operating

N4. FIXME: Consultations N5. FIXME: Self-study

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_U01- U03	Evaluation of the project report.		
F2	PEU_U04	Assessment of knowledge prior to measurements. Evaluation of the measurement report.		
F3	PEU_W01- W07	Written test at the end of semester		
P(W)=F1; P(L)=F2; P(P)=F3				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Golio M., "RF and Microwave Passive and Active Technologies", CRC Press 2008
- [2] Teitze U., Schenk C., "Electronic circuits: handbook for design and application", Springer 2008,
- [3] Pozar D. M., "Microwave engineering 3rd Edition", Willey, New York 2012
- [4] Materiały do wykładu na stronie przedmiotu

SECONDARY LITERATURE:

- [1] J. A. Dobrowolski, Technika wielkich częstotliwości, OWPW, Warszawa, 2003
- [2] B. Galwas, Miernictwo mikrofalowe, WKiŁ, Warszawa, 1985
- [3] Publikacje dostępne w bazie IEEE Xplore, http://ieeexplore.ieee.org/Xplore/home.jsp
- [4] M.Pasternak, Podstawy techniki mikrofal, skrypt elektroniczny, Warszawa 2001

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Jaworski, grzegorz.jaworski@pwr.edu.pl

Faculty of Electronics, Fotonics and Microsystems (W12N) / Department of Cybernetics and Robotics (K29W12ND02)

SUBJECT CARD

Name of subject in Polish: Systemy operacyjne czasu rzeczywistego

Name of subject in English: Real-time operating systems Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: facultative

Subject code: W12EKA-SM0518

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		50		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Programming in C/C++
- 2. Programming in linux

- C1. Acquiring knowledge about the basic structure and functions of real-time operating systems.
- C2. Acquiring practical skills to use real-time mechanisms available in RTOS and to create and run applications in selected real-time operating systems.

Relating to knowledge:

 $\mathrm{PEU}_\mathrm{W01}$ - Knows basic structure and functions of real-time operating system.

Relating to skills:

 $\ensuremath{\mathrm{PEU}}\xspace_{-}\xspace\xspace\xspace\xspace}$ - Is able to create efficient real-time applications for real-time operating systems.

	PROGRAM CONTENT			
	Lecture			
Lec1	Introduction to real-time operating systems.	2		
Lec2	Application of RTOS	4		
Lec3	Chosen aspects of operating systems, POSIX standard.	4		
Lec4	Architectures of real-time operating systems.	2		
Lec5	RTOS system services	4		
Lec6	Scheduler, scheduling algorithms, events handling	4		
Lec7	FreeRTOS - system features, usage, tasks scheduling	6		
Lec8	QNX - system features, usage, tasks scheduling	4		
	Total hours:	30		

	Laboratory	Number of hours
Lab1	Programming in Unix based OS, task scheduling	4
Lab2	Multighreading and Inter-Process communication aspects in unix based systems.	6
Lab3	FreeRTOS based applications building.	10
Lab4	Building application in QNX, Xenomai or smilar OS	10
	Total hours:	30

TEACHING TOOLS USED

- N1. Lecture in traditional and/or online form using a multimedia tools.
- N2. Laboratories
- N3. Own work independent literary studies

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01	Crediting with grade		
F2	PEU_U01	Laboratory grade		
P(W)=F1; P(L)=F2;				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] https://www.freertos.org Reference manual
- [2] Using the FreeRTOS Real Time Kernel a Practical Guide Standard Base Edition
- [3] B.P.Douglas: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems, Addison-Wesley, 2002
- [4] https://blackberry.qnx.com/en "QNX Neutrino System Architecture",

SECONDARY LITERATURE:

[1] "QNX Neutrino Programmer's Guide",

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Mateusz Cholewiński, mateusz.cholewinski@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Seminarium dyplomowe

Name of subject in English: ${\bf Diploma~Seminar}$

Main field of study (if applicable): **Electronics (EKA)** Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0512

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					30
Number of hours of total student workload (CNPS)					50
Form of crediting					Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points					2
including number of ECTS points for practical (P) classes					2.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					1.2

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

SUBJECT OBJECTIVES

- C1. Acquire the ability to seek selective knowledge necessary to complete a thesis.
- C2. Gain the ability to prepare a presentation to communicate your original ideas, concepts and solutions to an audience in a communicative manner.
- C3. Acquire creative discussion skills in which one can justify and defend one's position in a factual and substantive manner.
- C4. Acquire the ability to write a work that presents one's own achievements, including presenting one's own achievements against the background of developments in world thought.
- C5. Inculcate a creative attitude to determine priorities for the implementation of a specific task, motivate teamwork, and understand the need to communicate information and opinions to the public regarding the achievements of technology and other aspects of the activities of a technical college graduate.

SUBJECT LEARNING OUTCOMES

Relating to skills:

PEU_U01 - Can prepare a presentation including his/her own solutions

 $\mathrm{PEU}_\mathrm{U}02$ - Can substantiate his/her original ideas and solutions in a discussion

PEU_U03 - Can critically and objectively conduct discussions (also as a moderator) on his own and others' scientific and technical solutions.

PROGRAM CONTENT

	Seminar	Number of hours
Sem1	Choosing the topic and scope of the presentation with the seminar leader	2
Sem2- 15	Presentations and discussions (each student prepares 3 presentations)	28
	Total hours:	30

TEACHING TOOLS USED

- ${\rm N1.}$ Multimedia presentation prepared individually or in a small group
- N2. Problem-based group discussion
- N3. Own work
- N4. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT							
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement					
F1	PEU_U01	Evaluation of presentation,					
F2	PEU_U02	The ability to justify your own solutions					
F3	PEU_U03	Ability to conduct discussions in various roles					
P=(F1+F2+F3)/3	P = (F1 + F2 + F3)/3						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

 $\left[1\right]$ Dobierana indywidualnie do prezentowanego tematu / Individually tailored to the topic presented

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jarosław Sotor, jaroslaw.sotor@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Seminarium specjalnościowe Name of subject in English: Specialization seminar Main field of study (if applicable): Electronics (EKA) Specialization: Advanced Applied Electronics (AAE)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: obligatory

Subject code: W12EKA-SM0504

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)					45
Number of hours of total student workload (CNPS)					50
Form of crediting					Crediting with grade
For group of courses mark (X) the final course					
Number of ECTS points					2
including number of ECTS points for practical (P) classes					2.0
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)					1.8

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- C1. Acquisition of up-to-date knowledge in the field of the studied Specialization
- C2. Gain the ability to prepare a presentation to communicate your original ideas, concepts and solutions to an audience
- C3. Acquire creative discussion skills in which one can justify and defend one's position in a factual and substantive manner
- C4. Acquire the ability to write a work presenting one's own achievements, including the presentation of one's own achievements against the background of developments in world thought

Relating to skills:

PEU_U01 - Can prepare a presentation using appropriate sources (in different languages) of information, making their analysis, synthesis and creative interpretation. Can use appropriate methods, techniques and tools of ICT techniques.

 PEU_U02 - Be able to substantiate original ideas and solutions in a discussion

 PEU_U03 - Be able to critically evaluate the scientific and technical solutions of own and others

PEU_U04 - Be able to lead a discussion

PROGRAM CONTENT

	Seminar	Number of hours
Sem1	Choosing a topic for the presentation and discussing its scope with the teacher.	2
Sem2- 15	Presentations and discussions	28
	Total hours:	30

TEACHING TOOLS USED

- N1. Multimedia presentation prepared individually or in a small group
- N2. Problem-based group discussion
- N3. Own work
- N4. Consultations

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT						
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement				
F1	PEU_U01	Assessment of the prepared presentation.				
F2	PEU_U02	Assessment of the presentation in terms of content.				
F3	PEU_U03	Assessment of statements about the content of other presentations.				
F4	PEU_U04	Assessment of the manner of conducting the discussion.				
P = (F1 + F2 + F3 + F4)/4						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

 $\left[1\right]$ Dobierana indywidualnie do prezentowanego tematu / Individually tailored to the topic presented

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Jarosław Sotor, jaroslaw.sotor@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: Zaawansowane programowanie obiektowe

Name of subject in English: Advanced Obective Programming

Main field of study (if applicable): **Electronics (EKA)**Specialization: **Advanced Applied Electronics (AAE)**

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **facultative** Subject code: **W12EKA-SM0514**

Group of courses: \mathbf{No}

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		50		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- C1. The student would be introduce in the basis of object oriented programming, its engineering and methodology
- C2. The student would know how to prepare program source code using object oriented approach

Relating to knowledge:

- PEU_W01 Student knows the idea of the object oriented approach.
- ${\rm PEU}_{\rm W02}$ Can explain the fundamentals of object oriented methodology as the tool of the comprehending the real world.
- $\mbox{PEU}_{-}\mbox{W03}$ Can know an idea of object oriented methodology based on Unified Modeling Language (UML).
- PEU_W04 Student knows basic tools and paradigms of the object oriented approach.

Relating to skills:

- PEU_U01 Can independently formulate and use the technology of the object oriented programming.
- PEU_U02 Can create and execute the parts of the source code containing definitions of constructors both in the basis and in the derived classes.
- PEU_U03 Can create and execute the parts of the independently drawn up source code containing virtual functions and overloaded operators.

	PROGRAM CONTENT			
	Lecture	Number of hours		
Lec1-2	Introduction to object oriented programming.	4		
Lec3-4	Unified Modeling Language	4		
Lec5-7	Object-oriented programming language C++. Main paradigms. Constructors and destructors.	6		
Lec8	Mid-semester summary	2		
Lec9- 11	Java object oriented programming language. Main ideas. Packages and implementations.	6		
Lec12- 14	The $C\#$ object-oriented programming language. Main ideas. Interfaces and garbage collection.	6		
Lec15	Summary	2		
	Total hours:	30		

	Laboratory	Number of hours
Lab1-2	Getting to know the programming platform. A simple program in structured methodology.	4
Lab3-6	Application of the object-oriented approach to an individual simple C++ program agreed with the teacher.	8
Lab7-9	An individual program in C++ agreed with the teacher.	6
Lab10- 12	Application of an object-oriented approach to an individual simple program in $C\#$ or Java agreed with the teacher.	5
Lab13- 15	An individual program in $C\#$ or Java agreed with the teacher	6
	Total hours:	29

- N1. LCD Projector, blackboard
- N2. Computer with development software.

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT						
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement				
F1	PEU_W01- W05	Written or oral test				
F2	PEU_U01- U03	Program code presented and credited with grade				
P(W)=F1; P(L)=F2						

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Stroustrup B., The C++ programming language, NJ, Addison-Wesley, 2013.
- [2] Sahay S., Object oriented programming with C++, 2nd edition, New Delhi : Oxford University Press, 2012.
- [3] Eckel, B., Thinking in Java, Upper Saddle River: Prentice Hall, 2006
- [4] Hejlsberg A., Torgersen M., Wiltamuth S., Golde P., The C# Programming Language (3rd Edition), Microsoft .NET Development Series
- [5] Malik. D. S., Introduction to C++ programming, Boston, MA: Course Technology, Cengage Learning, 2009.
- [6] Actual documentation for C++, C#, Java

SECONDARY LITERATURE:

- [1] Kubik T., Kruczkiewicz Z., UML and service description languages: information systems modelling, Wrocław University of Technology, PRINTPAP, 2011.
- [2] Martin J., Odell J.J., Podstawy metod obiektowych, WNT, 1997

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Grzegorz Budzyń, grzegorz.budzyn@pwr.edu.pl

SUBJECT CARD

Name of subject in Polish: **Metody numeryczne i optymalizacja** Name of subject in English: **Numerical methods and optimization**

Main field of study (if applicable): Electronics (EKA)

Profile: academic

Level and form of studies: 2nd level, full-time

Kind of subject: **obligatory**

Subject code: W12EKA-SM0001

Group of courses: No

	Lecture	Exercise	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	50		80		
Form of crediting	Crediting with grade		Crediting with grade		
For group of courses mark (X) the final course					
Number of ECTS points	2		3		
including number of ECTS points for practical (P) classes			3.0		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	1.2		1.2		

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of basic mathematics
- 2. Knowledge of programming techniques
- $3. \ \,$ Knowledge of computational and simulation techniques

- C1. To be familiar with various numerical algorithms
- C2. To be skilled in using numerical algorithms for solving various problems in electronics
- C3. To be skilled in coding and testing computational algorithms in Matlab, and working with "Optimization Toolbox" in Matlab

Relating to knowledge:

- PEU_W01 has a fundamental knowledge on matrix factorization algorithms
- PEU_W02 has a fundamental knowledge on methods for eigenproblems
- PEU_W03 has a fundamental knowledge on linear least squares problems
- $\mathrm{PEU}_{-}\mathrm{W04}$ has a fundamental knowledge on under determined problems
- PEU W05 has a fundamental knowledge on iterative methods
- PEU_W06 has a fundamental knowledge on numerical methods for linear programming
- PEU_W07 has a fundamental knowledge on algorithms for unconstrained optimization
- PEU_W08 has a fundamental knowledge on algorithms for solving systems of nonlinear equations
- ${\rm PEU_W09}$ has a fundamental knowledge on algorithms for constrained optimization
- PEU_W10 has a basic knowledge on heuristic optimization

Relating to skills:

- PEU_U01 skilled in efficient coding and testing numerical algorithms in the computational environment
- PEU_U02 skilled in using Matlab for coding numerical algorithms
- PEU_U03 skilled in formulating an optimization problem, analyzing its numerical properties, and selecting the right algorithm for solving it

	PROGRAM CONTENT				
	Lecture	Number of hours			
LecW1	Inroduction, requirements, understanding Gaussian elimination, basic matrix factorization methods	4			
LecW2	Eigenproblems	2			
LecW3	Linear least-squares problems, ill-posed problems and regularization	4			
LecW4	Underdetermined problems	2			
LecW5	Iterative methods	2			
LecW6	Linear programming	2			
LecW7	Methods for unconstrained optimization	4			
LecW8	Systems of nonlinear equations	2			
LecW9	Constrained optimization	4			
LecW10	Metaheuristics, NP-hard problems	3			
LecW11	Test	1			
	Total hours:	30			

	Laboratory	Number of hours
LabL1	Direct methods for solving systems of linear equations and matrix factorization methods	4
LabL2	Eigenproblems	2
LabL3	Linear least-squares problems, ill-posed problems and regularization	4
LabL4	Underdetermined problems	2
LabL5	Iterative methods	2

LabL6	Linear programming	2
LabL7	Methods for unconstrained optimization	
LabL8	Systems of nonlinear equations	
LabL9	Constrained optimization	4
LabL10	Metaheuristics, NP-hard problems	4
	Total hours:	30

- N1. Lecture notes and slides
- N2. Lecture materials and laboratory instructions accessible from the websites:

http://www.studia.pwr.wroc.pl/materialy/ http://ue.pwr.wroc.pl/advanced_electronics.html

- N3. Computational works and discussions
- N4. Programming works coding of numerical algorithms in Matlab
- N5. Consultation hours
- N6. Homework preparation to laboratory work
- N7. Homework self-studying and preparation to examination

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation: F — forming (during semester), C — concluding (at semester end)	Learning outcome code	Way of evaluating learning outcome achievement		
F1	PEU_W01- 010	Written exam		
F2	PEU_U01- 03	Evaluation of written reports		
P(W)=F1; P(L)=F2;				

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999
- [2] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Springer, 2008 (3rd Edition).
- [3] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
- [4] J. Dreo, A. Petrowski, D. Siarry, E. Taillard, Metaheuristics for Hard Optimization: Simulated Annealing, Tabu Search, Evolutionary and Genetic Algorithms, Ant Colonies, Methods and Case Studies. Springer 2006
- [5] A. Bjorck, Numerical Methods for Least-Squares Problems, SIAM, Philadelphia, 1996
- [6] Ch. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998

SECONDARY LITERATURE:

- [1] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Second Edition, Springer-. Verlag, 2001
- [2] M. Sysło, N. Deo, J. Kowalik, Algorytmy optymalizacji dyskretnej, PWN, Warszawa 1995

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Rafał Zdunek, rafal.zdunek@pwr.edu.pl