

INAUGURACJA ROKU AKADEMICKIEGO 2023/2024 NA WYDZIALE ELEKTRONIKI, FOTONIKI I MIKROSYSTEMÓW 11 października 2023 r. Aula Politechniki Wrocławskiej, godz. 12:00

IMMATRYKULOWANI STUDENCI 2023/2024

- AUTOMATYKA I ROBOTYKA Szymon Witkowski
- ELECTRONICS AND COMPUTER ENGINEERING Konrad Szewczyk
 - ELEKTRONIKA Bartłomiej Czerwiński
 - ELEKTRONIKA I FOTONIKA Grzegorz Wojtalczyk
 - INTELIGENTNA ELEKTRONIKA Rafał Wasiecki
- INŻYNIERIA MIKROSYSTEMÓW MECHATRONICZNYCH Jakub Kołcz

ŚLUBOWANIE

Wstępując do wspólnoty akademickiej Politechniki Wrocławskiej,

ślubuję uroczyście:

- dążyć do prawdy i zdobywać wiedzę i umiejętności,
- rozwijać umysł i charakter do twórczego i odpowiedzialnego życia,
 - szanować godność każdego człowieka,
- postępować uczciwie, w zgodzie z prawem, tradycją i obyczajami akademickimi,
 - dbać o dobre imię Politechniki Wrocławskiej.

GAUDEAMUS IGITUR

Gaudeamus igitur, iuvenes dum sumus! Gaudeamus igitur, iuvenes dum sumus! Post iucundam iuventutem, post molestam senectutem, nos habebit humus, nos habebit humus.

Vivat Academia, vivant professores! Vivat Academia, vivant professores! Vivat membrum quodlibet, vivant membra quaelibet, semper sint in flore, semper sint in flore!

WYRAZY UZNANIA

Prof. dr hab. inż. Andrzej Dobrucki

Prof. dr hab. inż. Ryszard Makowski

INAUGURACJA ROKU AKADEMICKIEGO 2023/2024

NAGRODA DZIEKANA 2022/2023

- 1. Wojciech Bohdan
- 2. Krzysztof Gliwiński
- 3. Rafał Mikołajczyk
- 4. Ignacy Pochodyła
- 5. Mateusz Preizner
- 6. Igor Rak
- 7. Miłosz Rogaliński
- 8. Jakub Siuda
- 9. Adrianna Zimoch

WYRÓŻNIENIE DZIEKANA 2022/2023

- 1. Maciej Choiński
- 2. Bartłomiej Jędrusik
- 3. Gabriela Kaczmarek
- 4. Michał Kos
- 5. Kacper Kubacki
- 6. Maria Ławniczak
- 7. Aleksandra Parka
- 8. Jędrzej Szymczyk

NAJLEPSZY ABSOLWENT WYDZIAŁU 2022/2023

Studia I stopnia

inż. Igor Rak

NAJLEPSZY ABSOLWENT WYDZIAŁU 2022/2023

Studia II stopnia

mgr inż. Wiktoria Weichbrodt

LAUREACI KONKURSU

Najlepsza praca dyplomowa inżynierska 2022/2023

I miejsce

"Rozproszony system IoT monitorujący poziom sygnału w połączeniu z siecią Wi-Fi." – inż. Andrzej Małolepszy, Opiekun pracy: Dr hab. inż. Grzegorz Świrniak, prof. uczelni

II miejsce

"Bio-druk 3D organów, jako modeli edukacyjnych do celów zabiegowych w onkologii spersonalizowanej."

- inż. Oliwia Bujczyk, Opiekun pracy: Dr inż. Agnieszka Krakos

III miejsce

"ASMR - analiza sygnałów."

- inż. Krzysztof Gumiński, Opiekun pracy: Dr inż. Agnieszka Wielgus

LAUREACI KONKURSU

Najlepsza praca dyplomowa magisterska 2022/2023

l miejsce

"Analiza wpływu wygrzewania na właściwości powierzchni i gazochromowe cienkich warstw tlenku wolframu."

– mgr inż. Wiktoria Weichbrodt, Opiekun pracy: dr hab. inż. Michał Mazur, prof. uczelni

"Analiza metod uczenia przez wzmacnianie dla środowiska symulacyjnego w technologii Unity."

– mgr inż. Piotr Kupczyk, Opiekun pracy: dr inż. Bartłomiej Golenko

NAGRODY ODDZIAŁU WROCŁAWSKIEGO STOWARZYSZENIA ELEKTRYKÓW POLSKICH

Laureaci konkursu – prace dyplomowe inżynierskie

I nagroda

"Waga analityczna do precyzyjnych pomiarów w zakresie mikrogramowym." – inż. Damian Walczyk, Opiekun pracy: dr hab. inż. Grzegorz Świrniak, prof. uczelni

II nagroda równorzędna

"Moduł LTCC do ochrony przeciwprzepięciowej zintegrowany z filtrem przeciwzakłóceniowym." – inż. Kamil Kajdas, Opiekun pracy: dr inż. Arkadiusz Dąbrowski

"Sterowanie dronem za pomocą gestów dłoni z wykorzystaniem przetwarzania obrazów." – inż. Maciej Kaniewski, Opiekun pracy: dr inż. Wojciech Domski

> "Budowa małego mobilnego robota laboratoryjnego klasy (1,2)." – inż. Tomasz Lubelski, Opiekun pracy: dr inż. Robert Muszyński

NAGRODY ODDZIAŁU WROCŁAWSKIEGO STOWARZYSZENIA ELEKTRYKÓW POLSKICH

Laureaci konkursu – prace dyplomowe magisterskie

I nagroda

"Analiza wpływu wygrzewania na właściwości powierzchni i gazochromowe cienkich warstw tlenku wolframu."

- mgr inż. Wiktoria Weichbrodt, Opiekun pracy: dr hab. inż. Michał Mazur, prof. uczelni

II nagroda

"Zastosowanie metody bezczujnikowej w układzie monitorowania prędkości obrotowej wirnika silnika szczotkowego."

- mgr inż. Przemysław Wiewiór, Opiekun pracy: dr inż. Grzegorz Głomb

III nagroda

"Analiza systemów typu Bin picking dla optymalizacji zastosowań w robotach współpracujących." - mgr inż. Dawid Grajoszek, Opiekun pracy: dr inż. Andrzej Jabłoński

WYKŁAD INAUGURACYJNY

Lasery półprzewodnikowe jako grzebienie częstotliwości optycznych.

dr inż. Łukasz Sterczewski

Inauguracja roku akademickiego 2023/2024 11 października 2023

Lasery półprzewodnikowe jako grzebienie częstotliwości optycznych

Łukasz A. Sterczewski

Wydział Elektroniki, Fotoniki i Mikrosystemów, Politechnika Wrocławska Wyb.Wyspiańskiego 27, 50-370 Wrocław

Współpracownicy

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA

Mitchio Okumura et al.

Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375, USA

Jet Propulsion Laboratory California Institute of Technology

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Dlaczego potrzebujemy spektroskopii i nowych źródeł światła?

Laserowa spektroskopia optyczna jest nieinwazyjną techniką pomiarów widma absorpcyjnego substancji kompatybilną ze zdalną detekcją (bez fizycznego dostępu do badanego obiektu). Jest ona chętnie wykorzystywana do badań kosmicznych.

Wybrane cele agencji kosmicznych

Zrozumienie jak działa Ziemia jako system i jak się zmienia (np. wpływ gazów atmosferycznych).

Zrozumienie jak powstało życie na Ziemi i (możliwie) w innych regionach Układu Słonecznego - szukanie substancji organicznych.

Przygotowanie na eksplorację kosmosu (np. badania możliwości zamieszkania na innych planetach).

Wymóg czujników in-situ do badań substancji we wszystkich stanach skupienia

Ambicje

Detekcja metanu na Marsie wywołała burzliwą dyskusję na temat jego pochodzenia biotycznego albo abiotycznego. To stawia przed nami fundamentalne pytanie: czy istnieje życie w kosmosie?

Laserowa spektroskopia absorpcyjna

Światło laserowe (monochromatyczne)

Przykładowe widmo – metan na Marsie

Długie fale (bardziej czerwone)

Symulacja HITRAN T: 210 K, P: 0.006 atm (4.56 Torr)

Laserowa spektroskopia optyczna (TLAS)

Spektrometr z przestrajanym laserem (TLS)

Źródło: NASA/JPL, PI: Chris Webster

Mars Curiosity (2012)

Szerokie pasmo czyli setki laserów w jednym

Dlaczego potrzebujemy grzebieni?

298.1 K, ciśnienie atmosferyczne, baza danych HITRAN ABS 2019

Grzebienie częstotliwości – miniaturyzacja

https://www.menlosystems.com/products/optical-frequency-combs/fc1500-250-uln/

VS.

2 m

Porównanie wielkości

Waga \propto (wymiar)³

Nowe źródła laserowe o strukturze grzebienia częstości

Międzypasmowe lasery kaskadowe i diodowe

- ► Do **20 mW** mocy średniej przy <1 W mocy zasilania
- ~1 THz pasma optycznego, 10 GHz repetycji, 3-5 μm długości fali
- Samo-startująca emisja grzebienia bez zewnętrznych generatorów
- Wysoka skala miniaturyzacji
- ► Technologia kosmiczna → Curiosity rover

? Definicja grzebienia

Częstotliwość optyczna każdej linii widmowej opisana dwoma częstotliwościami mikrofalowymi: przesunięcia (offsetu) oraz powtarzania (repetycji).

Grzebienie częstotliwości optycznej w laserach ICL

Emisja grzebienia wynika z połączenia pracy wielomodowej (przestrzenne wypalanie dziur) + nieliniowość (mieszanie czterofalowe, FWM)

Liniowo-przemiatane źródło – aproksymacja

32

Liniowo-przemiatane źródło – obraz bliższy prawdy

Vol. 17 | January 2023

WILEY VCH

LASER & PHOTONICS REVIEWS

Battery-Operated Mid-Infrared Diode Laser Frequency Combs Lukasz A. Sterczewski, Mathieu Fradet, Clifford Frez, Siamak Forouhar, Mahmood Bagheri

www.lpr-journal.org

L. A. Sterczewski, et al., "Battery-operated mid-infrared diode laser frequency combs," *Laser & Photonics Reviews* **17**, 2200224 (2023).

Pierwsze źródło do spektroskopii dwugrzebieniowej w średniej podczerwieni zasilane bezpośrednio z baterii.

Rozdzielenie zębów

Problem rozdzielenia zębów

Rozdzielenie zębów grzebienia

Spektroskopia dwugrzebieniowa

- Korelacja krzyżowa pól elektrycznych między dwoma źródłami
- Szybki detektor na bazie lasera
- Odpowiedź mierzona w mikrosekundach

Spektrometr Fourierowski

- Mechaniczny skan zwierciadła (~s)
- Osiągalna rozdzielczość widmowa rzędu MHz przy mm przesuwu
- Wolny detektor (kHz)

Rozdzielenie zębów grzebienia

Spektroskopia dwugrzebieniowa

- Korelacja krzyżowa pól elektrycznych między dwoma źródłami
- Szybki detektor na bazie lasera
- Odpowiedź mierzona w mikrosekundach

Spektrometr Fourierowski

- Mechaniczny skan zwierciadła (~s)
- Osiągalna rozdzielczość widmowa rzędu MHz przy mm przesuwu
- Wolny detektor (kHz)

Spektroskopia dwu-grzebieniowa (dual-comb)

Spektroskopia dwu-grzebieniowa

Optyczna multi-heterodyna

Optyczna multi-heterodyna

Optyczna multi-heterodyna

Mid-IR QCLs: Villares et al. Nat. Comm. 5 (2014)

Spektroskopia dwugrzebieniowa w średniej podczerwieni

Autonomiczny spektrometr dwugrzebieniowy

Aspekt nowości

- Pierwszy autonomiczny spektrometr dwu-grzebieniowy. Źródła i fotodetektory z tego samego wafla – potencjał dla spektrometrów on-chip.
- Praca w temperaturze pokojowej dzięki zastąpieniu detektora HgCdTe bi-funkcjonalnym laserem ICL z GHz szybkością detekcji.

Bi-funkcjonalność laserów ICL pozwala na wykorzystanie ich jako źródła i szybkie detektory

Spektroskopia dwugrzebieniowa z wykorzystaniem ICL

Przykładowy pomiar szerokopasmowego absorbera

Metoda TDLAS na wielu częstotliwościach jednocześnie

Czysty CH₄, parametry HITRAN T: 293 K, P: 0.1 atm (76 Torr) – na potrzeby wizualizacji

Rozdzielenie zębów grzebienia

Spektroskopia dwugrzebieniowa

- Korelacja krzyżowa pól elektrycznych między dwoma źródłami
- Szybki detektor na bazie lasera
- Odpowiedź mierzona w mikrosekundach

Spektrometr Fourierowski

- Mechaniczny skan zwierciadła (~s)
- Osiągalna rozdzielczość widmowa rzędu MHz przy mm przesuwu
- Wolny detektor (kHz)

Rozdzielenie zębów grzebienia

Spektroskopia dwugrzebieniowa

- Korelacja krzyżowa pól elektrycznych między dwoma źródłami
- Szybki detektor na bazie lasera
- Odpowiedź mierzona w mikrosekundach

Spektrometr Fourierowski

- Mechaniczny skan zwierciadła (~s)
- Osiągalna rozdzielczość widmowa rzędu MHz przy mm przesuwu
- Wolny detektor (kHz)

Układ eksperymentalny – interferometr Michelsona

Spektroskopia Fourierowska z laserami diodowymi na 3 μ m – C₂H₂

Nominalna rozdzielczość: ~10 GHz, Poprawiona rozdzielczość: **30 MHz (0.001 cm**⁻¹**)** Co najmniej 100x zwiększenie rozdzielczości względem nominalnej. Równoważna droga lustra to 10 metrów (w rzeczywistości 2 x 15 mm)

Metoda TDLAS na wielu częstotliwościach jednocześnie

Czysty CH₄, parametry HITRAN *T*: 293 K, *P*: 0.1 atm (76 Torr) – na potrzeby wizualizacji

Źródłowe dane – przeplatane pomiary metanu

16 g wagi, multi-Hz prędkości skanowania, 9 mm of przesunięcia, cena \$200

Podsumowanie

- Niestabilizowana, szerokopasmowa wysokorozdzielcza spektroskopia w średniej podczerwieni z wykorzystaniem optycznych grzebieni częstotliwości pompowanych elektrycznie.
- Możliwość budowy spektrometrów Fouriera wielości telefonu komórkowego z równoważną różnicą dróg optycznych rzędu dziesiątek metrów.
- Potencjał na wykorzystanie nieliniowej konwersji częstotliwości celem osiągnięcia krótszych lub dłuższych długości fal.

Podziękowania

Jet Propulsion Laboratory California Institute of Technology

This work was supported under National Aeronautics and Space Agency's (NASA) PICASSO program & PDRDF program. It was in part performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the NASA.

Universities Space Research Association

L. A. Sterczewski's research was supported by an appointment to the NASA Postdoctoral Program at JPL, administered by Universities Space Research Association under contract with NASA.

Projekt otrzymał dofinansowanie z programu Unii Europejskiej "Horyzont 2020" w zakresie badań i innowacji Marii Skłodowskiej-Curie w ramach umowy nr 101027721.

Politechnika Wrocławska

Nowy rozdział

European Research Council

Established by the European Commission

Starting Grant 2023: TeraERC

Chip-based room-temperature terahertz frequency comb spectrometers (1 500 000 EUR).

Spektrometry terahercowe pracujące w temperaturze pokojowej na bazie zintegrowanych optycznych grzebieni częstotliwości.

🖂 lukasz.sterczewski@pwr.edu.pl

Szukamy nowych członków zespołu!

Laboratorium 131/C-4

Politechnika Wrocławska

INAUGURACJA ROKU AKADEMICKIEGO 2023/2024

POWODZENIA NA STUDIACH!